Exercise 1

A 25 g/l solution of a tracer was discharged into a stream at a constant rate of 10 cm³/s. The background concentration of the tracer in the stream water was found to be zero. At a downstream section sufficiently far away, the salt was found to reach an equilibrium concentration of 5 parts per billion.

- *i)* Estimate the stream discharge (example from Subramanya, 2008).
- *ii)* What happens to the computed discharge if infiltration along the riverbed is high and 10% of the diluted salt gets lost?
- *iii) List other possible sources of error.*

Exercise 2

Compute discharge Q at the sampling site, knowing that the ground conductivity L_0 is 550 μ S and the slope gradient a is 0.0003. For salt dilution 1 kg of salt was used.

Tub	ie i mea.	Juicu	contau	cuvity	at the sampling site after injection of a galp of salt unation.										
Time	(min)	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Li	(µS)	550	650	950	850	750	650	600	575	560	550	550	550	550	550

Table 1 Measured conductivity at the sampling site after injection of a "gulp" of salt dilution.

Exercise 3

You are interested in measuring discharge of the glacierized catchment of Chhota Shigri during an ablation period. Explain how you would measure it if you need daily or hourly measurements.

- *i)* Which methods would you choose and why?
- *ii)* Which are the advantages or disadvantages of these methods?

Note: For exercise solutions go through the lecture and summary.