

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizza

सत्यमेव जयते Department of Science and Technology Ministry of Science and Technology Government of India

2^{**} Indo-Swiss Capacity Building Programme on Himalayan Glaciology

surface energy balance measurements on Himalayan glacier: A case of Chhota Shigri glacier

AL. Ramanathan

School of Environmental Sciences JNU, New Delhi

The Cryosphere, 2014

The Cryosphere, 8, 2195–2217, 2014 www.the-cryosphere.net/8/2195/2014/ doi:10.5194/tc-8-2195-2014 © Author(s) 2014. CC Attribution 3.0 License.

Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements

M. F. Azam^{1,2}, P. Wagnon^{1,3}, C. Vincent⁴, AL. Ramanathan², V. Favier⁴, A. Mandal², and J. G. Pottakkal² ¹IRD/UJF – Grenoble I/CNRS/G-INP, LGGE – UMR5183, LTHE – UMR5564, 38402 Grenoble CEDEX, France ²School of Environmental Sciences, Jawaharlal Nehru University, 110067 New Delhi, India ³ICIMOD, G.P.O. Box 3226, Kathmandu, Nepal ⁴UJF – Grenoble I/CNRS, LGGE – UMR5183, 38041 Grenoble CEDEX, France

Correspondence to: M. F. Azam (farooqaman@yahoo.co.in, farooq.azam@lgge.obs.ujf-grenoble.fr)

http://www.the-cryosphere.net/8/2195/2014/tc-8-2195-2014.html

Hypothesis behind this study

Comprehensive glacier surface energy balance (SEB) studies are very useful for understanding of glacier–climate relationship.

Very few studies have been carried out in the High Himalayan glaciers till date (e.g., Glacier AX010, Kayastha et al., 1999)

✤ Unfortunately glacier SEB studies from Indian Himalaya (covering Western, some Central and Eastern parts of Himalaya) are not available.

✤ Therefore, there is an urgent need to conduct detailed SEB studies in different regions of Himalaya.

✤ Chhota Shigri is the most well studied glacier in the Indian side of the Himalaya as well over the whole Himalayan arc.

Use of AWS

Use of Automatic weather station (AWS) provides the noble opportunity to obtain long and continuous records of meteorological data and to study the seasonal and inter-annual variations in SEB at point locations (e.g., Oerlemans, 2000)

 However, surface conditions in the melt zones of glaciers are very unstable (high melt rates, forming of crevasses, development of melt water streams, etc.), and consequently it has taken some time to develop stations with a satisfactory performance.

*Other problems involve energy supply, moisture, and riming.

Therefore, one cannot expect hat an AWS on a glacier has the accuracy of a regular manned weather station

Objectives

EB analysis of Chhota Shigri Glacier, using in-situ AWS measurements

1. Glacier's microclimate analysis using AWS established on lateral moraine.

2. Analysis of the Surface Energy Balance components- total budget of incoming and outgoing

3. Role of energy fluxes (budget) on the Mass balance of Chhota Shigri glacier.

Chhota Shigri galcier

➤ Longest glaciological mass balance data on Indian Himalaya- glacier-wide annual mass balance has been monitored since 2002

➤A valley-type glacier located in the Chandra- Bhaga River basin, Pir Panjal Range, India

- Total glacierized area 15.7 km²
- ➤ Mostly free of debris (only 3.4 %)

The equilibrium-line altitude for a zero annual mass balance (ELA) was found to be close to 4900 ma.s.l.

➢ Between 2002-2013, mean annualwide mass balance -0.59±0.40 m w.e yr[−]

AWS locations

Sensors

Variable AWS1	symbol (unit)	sensor n surface	initial height (m)	stated accuracy
air temperature relative humidity wind speed wind direction incoming and outgoing short wave radiations incoming and outgoing long wave radiations air pressure accumulation/ablation	T_{air} (°C) RH (%) u (m s ⁻¹) WD (degree) SWI, SWO (W m ⁻²) LWI, LWO (W m ⁻²) P_{air} (hPa) SR50A (m)	Campbell HMP155A ^a Campbell HMP155A ^a A100LK, Vector Inst. W200P, Vector Inst. Kipp & Zonen CNR-4 Kipp & Zonen CNR-4 Young 61302V Campbell SR50A ^b	0.8 & 2.5 0.8 & 2.5 0.8 & 2.5 2.5 1.8 1.8 1 1.6 ⁰	±0.1 at 0°C ±1% RH at 15°C ±0.1 m s ⁻¹ up to 10 m s ⁻¹ ±2 deg ±10% day total ±10% day total ±0.3 hPa ±0.01 m or 0.4% to target
AWS2	C	n moraine		
air temperature relative humidity wind speed incoming short wave radiation incoming long wave radiation Precipitation (base camp)	T _{air} (°C) RH (%) <i>u</i> (m s ⁻¹) SWI (W m ⁻²) LWI (W m ⁻²) (mm)	Campbell H3-S3-XT Campbell H3-S3-XT Campbell 05103-10-L Kipp & Zonen CNR-1 Kipp & Zonen CNR-1 Geonor T-200B	1.5 1.5 3.0 2.5 2.5 1.7 (inlet height)	±0.1 at 0°C ±1.5 % RH at 23°C ±0.3 m s ⁻¹ ±10 % day total ±10 % day total ±0.6 mm

aspirated during daytime with RM Young 43502 radiation shields,

^b mounted on a separated aluminum pole drilled into the ice, ^c 1.6 m was initial height for SR50A sensor.

Sensors

Data Collection Process (in-situ data collection)

🔮 PC200W 4.1 Datalogger Support Software - CR200Series (CR200Series)															
AWSGL full data 30 min.xls [Compatibility Mode] - Microsoft Excel -									⊂ x						
Home Insert Page Layout Formulas Data Review View Add-Ins									x						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								Ι & t ≁							
C19 • f* 11.95															
	A	В	С	D	E	F	G	Н	I	J	К	L	M	N 🖌	
1					Tair high	RH high	Tair low	RH low	ind speed hig	ind Speed Ic	Ignore it	VD	Swin	Swout	5
2	TOAE	0004000	004000	FOODE	CD1000 Cbd 00	ODU AVO, Oblight, Oblight VO	50005								
3 4		BECOE	batt uplt M	E3285	LMI000.500.22 HMP155 Tair High I	HMP155 BH High Aug	. 03020 HMP155 Tair Iow Ar	IMPISS BH Iow A	wind high Auc	wind low Auc	wind direction (wind direction Aur	short up Au	short dn (
5	TS	BN	bak[sok]in	i i i eni	riidii 100_raii_riigii_r			1.00_1.0.00_7	t mild_ligh_rivg	*****	wind_direction	and_direction_hay	short_op_re	Short_un_r	
6			Min	Smp	Avg	Avg	Avg	Avg	Avg	Avg	Smp /	Avg	Avg	Avg	
7	12-08-12 17:30	0	12.44	5.311	4.97	1 83	4.125	85.2	5.512	4.527	185	182.4	209.2164	34.611	
8	12-08-12 18:00	1	12.23	4.923	4.814	85.5	4.036	87.5	6.563	5.457	175.5	186.1	88.00851	15.1784	
9	12-08-12 18:30	2	12.13	3 4.6	4.686	86.1	4.011	87.8	5.662	4.716	175.5	185.9	25.83072	5.55762	
10	12-08-12 19:00	3	12.	1 4.579	5.1/8	82.4	4.339	84.5	1.812	1.476	32.51	206	7.354838	0.6636	
12	12-08-12 13:30	4	12.07	0.764	4.233	00	3.330	00.0	1.840	2.74	205.1	206.2	0.05979579	0.160300	
13	12-08-12 20:00	6	12.01	2.51	3 540	876	2.502	90.6	3 593	2.14	204.6	200.9	0	0.829528	
14	12-08-12 21:00	7	12.0	1 2.544	3.229	88.5	2.517	89.5	2.698	2.179	25.26	144.2	0.05979595	2.07382	
15	12-08-12 21:30	8	12	2.523	3.133	95	2.505	94	0.952	0.922	174.4	139.6	0.05979595	1.9079	
16	12-08-12 22:00	9	11.98	2.374	3.057	95.6	2.29	95.1	1.209	1.179	180.8	179.5	0	1.5761(
17	12-08-12 22:30	10	11.97	2.053	2.766	94.3	1.983	94.6	2.024	1.724	243.3	207.5	0	1.57610	
18	12-08-12 23:00	11	11.96	2.076	3.138	89.5	2.455	92.6	2.351	2.012	216.4	215.1	0	2.73744	
19	12-08-12 23:30	12	11.95	2.225	3.23	87.7	2.714	89.4	3.28	2.755	231.5	220.7	0	2.4056	
20	13-08-12 0:00	13	11.94	2.311	3.325	85.2	2.807	86.5	2.704	2.249	235.8	217.5	0	1.07838	
21	13-08-12 0:30	14	11.90	2.066	3.401	88.3 04 F	2.324	89.3	1.081	1.392	107.6	143.5	0	0.49771	
23	13-08-12 1:00	10	11.92	1 2 887	3.23	94.3	2.072	94.1	0.964	0.695	222	143.5	0 1195919	0.0623520	
24	13-08-12 2:00	17	11.9	2.844	3.143	95.6	2.103	95.2	0.604	0.599	195.3	157.8	0.1100010		
25	13-08-12 2:30	18	11.89	2,566	2.853	93.8	2.178	94.3	1.925	1.628	176.3	195.7	Ő		
26	13-08-12 3:00	19	11.89	2.417	2.72	89.2	1.939	92.4	2.655	2.112	224.6	199.3	0		
27	13-08-12 3:30	20	11.88	2.587	3.253	88.7	2.561	90.3	1.464	1.229	185.8	140	0	0.0829528	
28	13-08-12 4:00	21	11.87	2.417	2.885	5 91.8	2.164	91.7	1.594	1.461	157.1	196	0		-
20	12 00 12 4.20	1000	MTO Ind		2 601	0 076	1900	02.2 1 4	0.621	0.070	200 A	02 K	Ŷ		
	Image: Second secon														

Data treatment and corrections

- 1. Find the data gap
- 2. Identify the outliers
- 3. Remove the outliers

For short period data gap (e.g. 2-3 days) we fill through linear interpolation. Weather dose not vary much in 2-3 days.

Strictly we use 30min data for every calculation- to get more temporal changes

Micrometeorology from AWS-moraine

Micrometeorology from AWS-moraine

Seasonal means and annual mean (standard deviations) of Tair, RH, u and SWI over four hydrological years between 1 October 2009 and 30 September 2013

	Winter	Pre-monsoon	Summer-monsoon	Post-monsoon	Annual
	(DJFM)	(AM)	(JJAS)	(ON)	mean
T _{air} (°C)	-13.4 (0.9)	-5.3 (0.7)	2.5 (0.6)	-7.8 (1.4)	-5.8 (0.2)
RH (%)	42 (2)	52 (2)	68 (1)	39 (6)	52 (2)
$u ({\rm ms^{-1}})$	5.5 (0.6)	3.5 (0.2)	2.8 (0.1)	4.4 (0.5)	4.1 (0.2)
$SWI (Wm^{-2})$	161 (12)	299 (34)	266 (7)	176 (18)	221 (14)
LWI (W m ⁻²)	192 (3)	231 (2)	289 (17)	187 (8)	230 (6)
<i>P</i> (mm w.e.)	679	148	117	32	976

Micrometeorology- Precipitation

The **ISM contributed only 21%** while MLW added 79% precipitation to the annual precipitation (976 mm) at Chhota Shigri base camp.

Energy Balance- equation and methods

Energy Balance- equation and methods

 \checkmark If sum of net radiation is positive on a temperate glacier,

Then the energy goes towards:

heating of snow/ice, when the snow/ice temperature at the surface is negative.

melting, when the snow/ice temperature at the surface is zero.

 \checkmark If the sum of net radiation and sensible and latent heat fluxes is negative,

Then the glacier cools:

Melting is zero and the energy balance is closed by cooling of the glacier (positive ground heat flux).

Energy Balance- equation and methods

Turbulent fluxes:

Latent (LE) and Sensible heat (H) fluxes were calculated using bulk aerodynamic method (Azam et al., 2014b)

$$\begin{split} H &= \rho \frac{C_p k^2 u \left(T_{air} - T_{surf}\right)}{\left(ln \frac{z}{z_{0m}}\right) \left(ln \frac{z}{z_{0T}}\right)} \left(\Phi_m \Phi_h\right)^{-1} \\ LE &= \rho \frac{L_s k^2 u \left(q - q_{surf}\right)}{\left(ln \frac{z}{z_{0m}}\right) \left(ln \frac{z}{z_{0q}}\right)} \left(\Phi_m \Phi_v\right)^{-1} \end{split}$$

Wind regime- on glacier surface- using surface AWS

down-glacier wind coming from south to southwest during post-monsoon and winter periods

Energy Balance Components

- Short wave incoming is the main driver for melt energy
- ✤ Q (melt energy) is always positive in summer monsoon
- ***** Latent heat flux = positive during summer-monsoon- less sublimation more melting

Energy Balance- diurnal pattern

Model validation

Melting calculated through SEB compared with on glacier ablation stake.

Strong relationship between computed and measured melting ($R^2 = 98$)

Model validation

Another approach,

We correlated observed/measured surface temperature and modeled surface temperature (using Stephen Boltzman).

Control of summer-monsoon snowfall on melting

In summer-monsoon 2012 Chhota Shigri Glacier received one important snowfall on 17–19 September of 25mm

This snowfall abruptly changed the surface conditions by varying the surface albedo from 0.19 to 0.73.

Iight snowfalls, observed from 13 to 16 September 2013 and from 24 to 30 September 2013, were only able to protect the glacier from high melting for some days but could not maintain a persistent snow cover as in mid-September 2012.

2nd Indo-Swiss Capacity Building Programme on Himalayan Glaciology, New Delhi

w.e.

Different Surface condition

In winter (very high albedo, less melt) In summer (very low albedo, high melt)

Control of summer-monsoon snowfalls on melting- confirmation using long-term data

✤ Annual glacier-wide mass balances between 2002 and 2013 were compared with the largest summer-monsoon daily snowfalls of the corresponding season.

Extrapolated using daily precipitation data from Bhuntar

Best relationship is obtained when considering the sum of the three most important daily snowfall records of the corresponding summer-monsoon season

The correlation is strong

 $(R^2 = 0.88, n = 11 \text{ years})$

Comparison of SEB with other Himalayan/Tibetan Plateau glaciers

Glacier	Altitude	Region	Period of	R	Н	LE	Rest	Q	
	(m a.s.l.)	(ISM dominated, Y or N)	observation	(W m ⁻²)	Reference				
Glacier AX010		central Himalaya, Nepal	25 May- 25 Sep	64 (85)	8 (10)	4 (5)	-	74 (100)	Kayastha et al.,
	4960	(Y)	1978						1999
Glacier AX010		central Himalaya, Nepal	25 May- 25 Sep	55 (83)	8(12)	3 (5)	-	63 (100)	Kayastha et al.,
	5080	(Y)	1978						1999
Xixibangma		south central TP ^a (N)	23 Aug- 11 Sep			-19 (57)	-		Aizen et al., 2002
	5700		1991	28(86)	5(14)			14(43)	
Parlung No. 4	4800	southeast TP (Y)	21 May- 8 Sep 2009	150 (84)	28 (16)	-1 (1)	-1 (1)	176 (98)	Yang et al., 2011
Zhadang	5660	central TP (N)	1 May - 30 Sep	62 (86)	10(14)	-8 (11)	-4 (5)	-61 (84)	Zhang et al., 2013
			2010						
Zhadang	5660	central TP (N)	1 May - 15 Sep	27 (77)	8 (23)	-10 (28)	-2 (5)	-24 (67)	Zhang et al., 2013
			2011						
			16 June-7 Sep	63 (81)	14 (19)	-54 (70)	-	23 (30)	Li et al., 2011
Keqicar	4265	southwest Tianshan (N)	2005 ^b						
Laohugou No.			1 June-30 Sep 2011	81 (93)	7 (7)	-13 (15)	-	75 (85)	
12	4550	western Qilian, China (N)							Sun et al., 2014
		western Himalaya,					-		
Chhota Shigri	4670	India (Y)	8 July-5 Sep 2013	188 (82)	31 (13)	11 (5)		230 (100)	Present study

^aTP = Tibetan Plateau; ^bwith a gap of 1 July to7 Aug 2005

SW radiation is the main source for melting on every glacier.

Conclusion

Sensible heat flux = positive all the time- transported heat towards the glacier surface

*****Latent heat flux = positive during summer-monsoon : resublimation.

*****Latent heat flux = negative during post-monsoon & winter : sublimation

EB = positive in summer-monsoon period - melting

♦ Net all-wave radiation = 82%, H and LE = 13% and 5%, respectively

Summer Monsoon snowfall event = is one of the important MB drivers

✤ Good validation of present model -reliable enough to make robust calculations of surface energy balance

Still, we need round the year/ long term data for better understanding

1st Indo-Swiss Capacity Building Programme on Himalayan Glaciology

Chhota Shigri glacier, September, 2013

Thank you for your kind attention and patience!!