
Chapter 10

Glaciers and ice sheets

Glaciers are huge and slow moving rivers of ice which exist in various parts of the
world: Alaska, the Rockies, the Alps, Spitzbergen, China, for example. They drain
areas in which snow accumulates, much as rivers drain catchment areas where rain
falls. Glaciers also flow in the same basic way that rivers do. Although glacier ice is
solid, it can deform by the slow creep of dislocations within the lattice of ice crystals
which form the fabric of the ice. Thus, glacier ice effectively behaves like a viscous
material, with, however, a very large viscosity: a typical value of ice viscosity is 6 bar
year (in the metre-bar-year system of units!). Since 1 bar = 105 Pa, 1 year ≈ 3× 107

s, this is a viscosity of some 2 × 1013 Pa s, about 1016 times that of water. As a
consequence of their enormous viscosity, glaciers move slowly — a typical velocity
would be in the range 10–100 m y−1 (metres per year), certainly measurable but
hardly dramatic. More awesome are the dimensions of glaciers. Depths of hundreds
of metres are typical, widths of kilometres, lengths of tens of kilometres. Thus glaciers
can have an important effect on the human environment in their vicinity. They are
also indirect monitors of climate; for example, many lithographs of Swiss glaciers show
that they have been receding since the nineteenth century, a phenomenon thought
to be due to the termination of the ‘Little Ice Age’ which lasted from about 1500 to
about 1900.

Where glaciers are the glacial equivalent of rivers, i.e. channelled flow, ice sheets
are the equivalent of droplets, but altogether on a grander scale.1 When an entire
continent, or at least a substantial portion thereof, has a polar climate, then snow
accumulates on the uplands, is compressed to form ice, and flows out to cover the
continent, much as a drop of fluid on a table will spread under the action of gravity.
However, whereas droplets can reach a steady state through the contractile effect of
surface tension, this is not relevant to large ice sheets. In them, equilibrium can be
maintained through a balance between accumulation in the centre and ablation at the
margins. This can occur either through melting of the ice in the warmer climate at the
ice margin, or through calving of icebergs. (Indeed, the same balance of accumulation
at higher elevations with ablation at lower elevations is responsible for the normal
quasi-steady profile of valley glaciers.)

1Ice caps are smaller scale sheet flows, such as the Vatnajökull ice cap in Iceland, whose horizontal
dimension is about 100 km.

618

hp 1
Typewriter

hp 1
Pencil

hp 1
Pencil

hp 1
Pencil

hp 1
Pencil

hp 1
Pencil

hp 1
Pencil

hp 1
Pencil

hp 1
Pencil



There are two major ice sheets on the Earth, namely those in Antarctica and
Greenland (the Arctic is an ocean, and its ice is sea ice, rarely more than three metres
thick). They are on the order of thousands of kilometres in extent, and kilometres
deep (up to four for Antarctica). They are thus, in fact, shallow flows, a fact which
greatly facilitates the solution of mathematical models for their flow. Possibly more
famous are the ice sheets which covered much of North America (the Laurentide ice
sheet) and northern Europe (the Fennoscandian ice sheet) during the last ice age.
Throughout the Pleistocene era (that is, the last two million years), there have been
a succession of ice ages, each lasting a typical period of around 90,000 years, during
which global ice sheet volume gradually increases, interspersed with shorter (10,000
year) interglacials, when the ice sheets rapidly retreat. The last ice age finished some
ten thousand years ago, so that it would be no surprise if another were to start now.
Perhaps the Little Ice Age was indeed the start of ice sheet build-up, only to be
interrupted by the Industrial Revolution and the resultant global warming: nobody
knows.

Further back in Earth’s geologic history, there is evidence for dramatic, large scale
glaciation in the Carboniferous (c. 300 My (million years) ago), Ordovician (c. 500 My
ago), Neoproterozoic (c. 600–800 My ago) and Huronian (c. 2,500 My ago) periods.
In the Neoproterozoic glaciation, it seems that the whole landmass of the Earth may
have been glaciated, leading to the concept of ‘snowball Earth’. It was following the
shrinkage of the global ice sheet that the explosion of life on Earth started.2

Drainage and sliding

While the motion of ice sheets and glaciers can be understood by means of viscous
theory, there are some notable complications which can occur. Chief among these is
that ice can reach the melting point at the glacier bed, due to frictional heating or
geothermal heat input, in which case water is produced, and the ice can slide. Thus,
unlike an ordinary viscous fluid, slip can occur at the base, and this is determined by a
sliding law which relates basal shear stress τ to sliding velocity ub and also, normally,
the effective pressure N = pi − pw, where pi and pw are ice and water pressures. The
determination of pw further requires a description of the subglacial hydrology, and
thus the dynamics of ice is intricately coupled to other physical processes: as we shall
see, this complexity leads to some exotic phenomena.

10.1 Dynamic phenomena

10.1.1 Waves on glaciers

Just as on rivers, gravity waves will propagate on glaciers. Because the flow is very
slow, they only propagate one way (downstream), and at speeds comparable to the
surface speed (but slightly faster). These waves are known as surface waves, as they

2Snowball Earth was discussed in chapter 2.
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Figure 10.1: Changes of mean surface elevation of Mer de Glace, France, along four
cross-profiles over a period of 9 years. The broken line corresponds to a wave velocity
of 800 m/a. Reproduced from Lliboutry (1958a), by permission of the International
Association of Hydrological Sciences.

are evidenced by undulations of the surface: an example is shown in figure 10.1. They
are examples of kinematic waves, driven by the dependence of ice flux on glacier depth.

A more exotic kind of wave is the ‘seasonal wave’. This has no obvious counterpart
in other fluid flows. It consists of (sizeable) perturbations in the surface velocity field
which propagate down glacier at speeds in the order of 20-150 times the surface
speed. There is no significant surface perturbation, and these waves must in fact
be caused by variations of the basal sliding speed due to annual fluctuations in the
basal water pressure. Although well-known and reported at the turn of the century,
little attention has been paid to these waves in recent years. Figure 10.2 shows
measurements of Hodge on Nisqually Glacier which indicates the rapid passage of a
velocity wave downstream.

Mention should also be made of wave ogives, although we will not deal with them
here. They are bands (also known as Forbes bands) which propagate below ice-falls,
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Figure 10.2: The measured surface speed of Nisqually Glacier, Mt. Rainier, as a
function of time and distance. The contour interval is 25 mm d−1. The maximum and
minimum speeds occur progressively later with distance down-glacier; this represents
a “seasonal wave” in the ice flow. Reproduced from Hodge (1974), and reprinted from
the Journal of Glaciology with permission of the International Glaciological Society.

and are due to the annual ablation cycle.

10.1.2 Surges

Perhaps the most spectacular form of wave motion is the glacier surge. Surges are
large scale relaxation oscillations of the whole length of a glacier. They are roughly
periodic, with periods of the order of 20–100 years. During a long quiescent phase,
the glacier is over-extended and thin. Ice accumulation causes the glacier to thicken
upstream, while the over-extended snout thins and retreats. Eventually, a critical
thickness is reached, and the glacier slumps rapidly downslope again. These surges
will typically last only a year or two, during which time the velocity may increase a
hundred-fold. The glacier snout can then advance by several kilometres.

A typical (and much studied) example is the Variegated Glacier in Alaska. Its
surge periodicity is about twenty years, while its surges last about two years. The
glacier, of length twenty kilometres and depth four hundred metres, advances some
six kilometres during its surge, at measured speeds of up to 65 metres per day. Such
large velocities can only occur by basal sliding, and detailed observations during
the 1982–3 surge showed that the surge was mediated by an alteration in the basal
drainage system, which had the effect of raising water pressure dramatically. A
dynamic model suggests, in fact, that the oscillations are caused by the competitive
interaction between the basal sliding law and the hydraulics of the subglacial drainage
system. When the ice is relatively thin (hence the driving shear stress is low) the
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Figure 10.3: Variegated Glacier at the beginning of a surge, 29 August, 1964. Pho-
tograph by Austin Post, U.S. Geological Survey.

drainage occurs through a network of channels incised into the ice at the glacier
bed called Röthlisberger channels. These allow effective drainage at quite low water
pressures (hence high effective pressures) and thus also low ice velocities. At higher
driving stresses, however, an instability forces the channel system to close down,
and the basal water is forced into cavities which exist between the ice and bedrock
protuberances (such cavities are well-known to exist). The water flow is reduced, and
the sudden increase in water pressure causes a sudden increase in ice velocity — the
surge. The transition front between the linked cavity drainage system and the channel
system is nucleated near the maximum depth, and propagates rapidly both upstream
and downstream, at (measured) speeds on the order of hundreds of metres per hour.
At the end of the surge, the channel drainage system is re-established. Figures 10.3
and 10.4 show an aerial view of Variegated Glacier in pre- and post-surge states.

Our understanding of the Variegated surges relies on the concept of drainage
switch between channelised flow and linked cavities, implicitly for ice flowing over
(hard) bedrock. A rather different situation appears to operate in Trapridge Glacier,
another well-studied surging glacier, in the Yukon. Here the glacier is cold in its in-
terior (unlike the temperate (at the melting point) Variegated Glacier); and rests on
a thick (∼ 6 metres) layer of till, sometimes more graphically called boulder clay — a
non-uniform mixture of angular rock fragments in a finer-grained, clay-rich ground-
mass (see figure 10.5). Till has a bimodal grain size distribution, and is produced by

622



Figure 10.4: Variegated Glacier at the end of a surge, 22 August, 1965. Photograph
by Austin Post, U.S. Geological Survey.

the erosion of brittle underlying bedrock, and is evacuated by the slow motion of the
ice downstream.

The sequence of events which appears to be occurring as Trapridge thickens is that,
firstly, the basal ice reaches melting point (and the till thaws). When this happens,
the till becomes deformable, and the basal ice can slide over the bed by riding on
the deforming till. The rate at which this occurs depends on the till rheology, where
opinion is currently divided as to whether a viscous or plastic rheology is the more
appropriate.3 What does seem to be clear is that the water pressure will have a
major effect. Increasing saturation causes increasing water pressure, which pushes
the sediment grains apart and allows them to move more freely, so that in effect
enhanced water production causes enhanced sliding. In turn, increased sliding causes
increased frictional heating, so that there is a positive feedback which potentially
can cause runaway and consequent surging behaviour. Whether the effect is strong
enough is not obvious, but we shall examine a simple model which suggests that it
may be.

3Note the use of the word ‘appropriate’. As a saturated, granular material, somewhat like soil,
there is little argument that a plastic rheology accommodating a yield stress is the most apposite
description; such a description does not in itself provide an answer to such questions as to whether
till deforms with depth (i. e., shears), or whether discrete slip occurs at the ice-till interface.
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Figure 10.5: Subglacial till in a coastally exposed drumlin at Scordaun, Killough, Co.
Down, Northern Ireland.

10.1.3 Ice streams

Although ice sheets also flow under the horizontal pressure gradients induced by the
glaciostatic pressures beneath their sloping surfaces, they rest on essentially unsloping
bases, and therefore have no advective component in their dynamics. Thus ice sheets
do not, at least on the large scale, exhibit wave motion: the governing equations
are essentially diffusive in character. On a more local scale, however, ice sheets have
interesting phenomena of their own.

Principal among these may be ice streams. Ice sheets do not tend to drain uni-
formly to the margin from their central accumulation zones, but rather the outflows
from catchment areas are concentrated into fast-moving ice streams. Examples are
the Lambert Glacier in Antarctica and Jakobshavn Isbrae in Greenland, a fast-moving
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(more than 10 kilometres per year) outlet glacier.4 These ice streams gain their speed
by carving out deep channels through which they flow. Indeed, there is an obvious
positive feedback here. The deeper an ice flow, the larger the driving basal stress, and
the warmer the basal ice (due to increased frictional heat and decreased conductive
heat loss), and hence the softer the ice. Both of these effects contribute to enhanced
ice flow, which can explain the formation of such channels, since the erosive power
of ice flow increases with the basal velocity and the basal shear stress. Indeed, flow
of ice over a plane bed is subject to a lateral instability (much as overland flow of
surface water is unstable to the formation of rills and gullies).

A similar kind of mechanism may operate when ice flows over deforming sedi-
ments, as in the Siple Coast of West Antarctica. Here, it is found that the flow is
concentrated into five ice streams, A, B, C, D, and E, which are characterised by their
heavily crevassed appearance. Ice stream B is now known as the Whillans ice stream,
in memory of the glaciologist Ian Whillans. Following this, the other ice streams
have also been named after individuals; specifically, A is Mercer, C is Kamb, D is
Bindschadler and E is MacAyeal. The flow in these ice streams is very rapid and is
due to basal sliding over the underlying sediment (except for the Kamb ice stream
C, which appears to have ‘switched off’ several hundred years ago). Measurements
on the Whillans ice stream indicate that the basal water pressure is high (within 0.4
bar of the overburden pressure), and that it is underlain by some eight metres of
saturated till. A similar instability to that concerning ice flow over hard bedrock may
explain the streaming nature of the flow. Where ice flow is larger, there is increased
water production. If the drainage system is such that increased water production
leads to increased water pressure (as one might expect, e.g. for a Darcy flow), then
the higher water pressure decreases the viscosity of the till, and hence enhances the
ice flow further. This is an instability mechanism, and the limiting factor is that when
ice flow increases, there is increased heat loss from the base, which acts to limit the
increase of melt rate.

10.1.4 Ice shelf instability

Where continental ice sheets are not diminished by ablation, the ice will flow to the
continental margin, where it will spill into the ocean. This, for example, is the case
in Antarctica, where it is so cold that ordinary mass wastage of the ice is virtually
absent. As a result, ice shelves are formed, which are tongues of floating ice connected
to the grounded ice at the grounding line. The grounding line is a dynamical free
boundary, whose location determines the hold up of land ice, and its determination
is therefore of some interest as regards sea level changes.

Over the past several decades, various arguments have been put forward to suggest
that ice shelves are inherently unstable and liable to collapse. This idea was origi-
nally put forward in consideration of the West Antarctic Ice Sheet (WAIS), much of
the grounded part of which lies on a submarine bed. If the WAIS were to collapse

4Jakobshavn has undergone a remarkable acceleration in recent years, doubling its speed from 6
to 12 kilometres a year in the ten years between 1992 and 2003.
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completely, global sea level would rise by some six metres, inundating many coastal
cities.

The basic physical mechanism for this putative catastrophic collapse is a positive
feedback between grounding line retreat and ice flow rate. Since ice shelves are
not resisted at their base, they can plausibly flow more rapidly, and the consequent
drawdown effect will lower ice elevation, thus allowing further grounding line retreat.
The debate has been fuelled by the remarkable collapse of the Larsen B Ice Shelf on
the Antarctic Peninsula in 2002, which is thought to be due to a climatic warming
trend over recent decades. However, as we shall see below, it is by no means trivial
to pose a theoretically coherent model for grounding line motion, and the issue of
stability remains not fully resolved.

10.1.5 Tidewater glaciers

If the position of the grounding line indicates a balance between inland ice flow and ice
shelf evacuation, the actual mechanism of break up involves mass wastage by calving
icebergs. Indeed, in the absence of ablation, calving is the way in which marine ice
sheets (i. e., those terminating in the sea) satisfy mass balance.

Glaciers which terminate in the sea are called tidewater glaciers, and are suscep-
tible to a similar kind of catastrophic retreat to that which may be important for ice
shelves. They also lose mass by calving, but are distinguished from ice shelves by the
fact that the ice is grounded right to the margin. Instability is promoted by the fact
that the calving rate increases with depth of water. If a tidewater glacier advances
(in a cold climate), it will push a ridge of moraine ahead of it, snowplough style. In a
stationary state, the water depth at the calving front will then be less than it is away
from the margin, because of this moraine. Then, if the glacier snout retreats due,
for example, to a warming trend, the snout will suddenly find itself in deeper water.
The resultant increased calving rate can then lead to a catastrophic retreat. Just
such a rapid retreat was observed in the Columbia Glacier in Alaska, which retreated
some 12 km in twenty years from 1982, and it seems such rapid retreat is a common
behavioural feature of tidewater glaciers in conditions of warmer climates.

10.1.6 Jökulhlaups

It will be clear by now that basal water is tremendously important in determining the
nature of ice flow. Equally, the basal water system can fluctuate independently of the
overlying ice dynamics, most notably in the outburst floods called jökulhlaups. In
Iceland, in particular, these are associated with volcanoes under ice caps, where high
rates of geothermal heat flux in the confines of a caldera cause a growing subglacial
lake to occur, Eventually this overflows, causing a subglacial flood which propagates
downglacier, and whose subsequent emergence at the glacier terminus releases enor-
mous quantities of water over the southern coastal outwash plains. These floods carry
enormous amounts of volcanic ash and sediments, which create vast beaches of black
ash. Despite their violence, the ice flow is hardly disturbed. Jökulhlaups are essen-
tially internal oscillations of the basal drainage system. They are initiated when the
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rising subglacial lake level causes leakage over a topographic rim, and the resultant
water flow leads to an amplifying water flow by the following mechanism. Water flow
through a channel in ice enlarges it by meltback of the walls due to frictional heating.
The increased channel size allows increased flow, and thus further enlargement. The
process is limited by the fact that the ice tends to close up the channel due to the
excess overburden pressure over the channel water pressure, and this is accentuated
when the channel is larger. In effect, the opening of the valve by the excess lake
pressure is closed by the excess ice pressure. These floods occur more or less period-
ically, every five to ten years in the case of one of the best known, that of Gŕımsvötn
under Vatnajökull in South-east Iceland. A theory for their formation is the subject
of chapter 11.

10.2 The shallow ice approximation

10.2.1 Glaciers

We consider first the motion of a glacier in a (linear) valley. We take the x axis in the
direction of the valley axis, z upwards and transverse to the mean valley slope, and y
across stream. The basic equations are those of mass and momentum conservation,
which for an incompressible ice flow (neglecting inertial terms) are

∇.u = 0,

0 = −∇p + ∇.τ + ρg, (10.1)

where g is the gravity vector, p is the pressure, and τ is the deviatoric part of the
stress tensor. These are supplemented by the energy equation, which can be written
in the form

ρcp(Tt + u .∇T ) = k∇2T + τij ε̇ij, (10.2)

where ρ is ice density, cp is specific heat, and k is thermal conductivity. The sum-
mation convention is employed in writing the viscous dissipation term.5 We focus
for the present on the mass and momentum equations, and will deal with the energy
equation later.

The stress and strain rate are related by

τij = 2η ε̇ij, (10.3)

where η is the effective viscosity, and ε̇ij is the strain rate

ε̇ij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (10.4)

The most common choice of flow law is known as Glen’s law, that is

ε̇ij = A(T )τn−1τij, (10.5)

5The summation convention is essentially a device for omitting summation signs; it asserts that
summation is implied over repeated suffixes; thus τij ε̇ij means

∑

i,j

τij ε̇ij .
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Figure 10.6: Typical profile of a valley glacier

where the second stress invariant is given by 2τ 2 = τijτij (using the summation
convention) and A(T ) is a temperature dependent rate factor which causes A to vary
by about three orders of magnitude over a temperature range of 50 K: variation of A
is thus significant for ice sheets (which may be subject to such a temperature range),
but less so for glaciers. If we adopt the configuration shown in figure 10.6, then
g = (g sin α, 0,−g cos α), where α is the mean valley slope downhill.

Boundary conditions for the flow are conditions of equal normal stress at the top
surface z = s(x, y, t); that is σn = −pan, where pa is atmospheric pressure, or in
coordinate form, σijnj = −pani, where n ∝ (−sx,−sy, 1) :

(−p + τ11)sx + τ12sy − τ13 = −pasx,

τ12sx + (−p + τ22)sy − τ23 = −pasy,

τ13sx + τ23sy − (−p + τ33) = pa. (10.6)

At the base z = b(x, y, t), we prescribe the velocity:

u = ub, v = vb, w = ubx + vby; (10.7)

(ub, vb) is the (horizontal) sliding velocity, whose form is discussed later (as are appro-
priate temperature conditions). Finally, the kinematic condition on the free surface
z = s is

w = st + usx + vsy − a, (10.8)

where a is the prescribed surface accumulation: positive for ice accumulation from
snowfall, negative for ice ablation by melting.

A major simplification ensues by adopting what has been called the shallow ice
approximation.6 It is the lubrication theory idea that the depth d' the glacier length

6The term arose during a discussion about glacier dynamics one tea time in the Mathematical
Institute, Oxford, in 1976. It was invented in keeping with the fluid mechanical description of long
waves known as shallow water theory.
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l, and is adopted as follows. We scale the variables by putting

u ∼ U ; v, w ∼ εU ;

x ∼ l; y, z, b, s ∼ d; t ∼ l/U ;

τ13, τ12 ∼ [τ ]; A ∼ [A]; a ∼ [a];

p− pa − (ρg cos α)(s− z) ∼ ε[τ ];

τ11, τ22, τ33, τ23 ∼ ε[τ ], (10.9)

where

ε =
d

l
(10.10)

is the aspect ratio, and we anticipate ε ' 1. The choice of d and [τ ] has to be
determined self-consistently; we choose l from the given spatial variation of accu-
mulation rate, and we choose U via εU = [a], which balances vertical velocity with
accumulation rate. If we choose [τ ] = ρgd sin α, and define

µ = ε cot α, (10.11)

then the scaled momentum equations are

∂τ12

∂y
+

∂τ13

∂z
= −1 + µ

∂s

∂x
+ ε2

(
∂p

∂x
− ∂τ11

∂x

)
,

∂s

∂y
=

ε2

µ

[
−∂p

∂y
+

∂τ12

∂x
+

∂τ22

∂y
+

∂τ23

∂z

]
,

∂p

∂z
=

∂τ13

∂x
+

∂τ23

∂y
+

∂τ33

∂z
. (10.12)

The boundary conditions (10.7) and (10.8) are unchanged in form, and the stress
conditions at the top surface z = s(x, y, t) (10.6) become

ε2(−p + τ11)sx + τ12sy − τ13 = 0,

τ12sx + (−p + τ22)sy − τ23 = 0,

τ13sx + τ23sy − (−p + τ33) = 0. (10.13)

To get some idea of typical magnitudes, use values d ∼ 100 m, l ∼ 10 km,
tan α ∼ 0.1; then ε ∼ 10−2, µ ∼ 10−1, so that to leading order s = s(x, t) and

∂τ12

∂y
+

∂τ13

∂z
= −1 + µ

∂s

∂x
; (10.14)

we retain the µ term for the moment.
The final relation to choose d (and hence also [τ ]) is determined by effecting a

balance in the flow law. If the viscosity scale is [η], then we choose

[τ ] =
[η]U

d
. (10.15)
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For example, for Glen’s law, we can choose [η] =
1

2[A][τ ]n−1
, from which we find

d =

[
[a]l

2[A](ρg sin α)n

]1/(n+2)

, (10.16)

which leads, using typical choices of the parameters given in table 10.1, to values of
d comparable to those observed (d = 128 m).

Symbol Definition Glacier value Ice sheet value
[a] accumulation rate 1 m y−1 0.1 m y−1

[A] flow rate constant 0.2 bar−n y−1

cp specific heat 2 kJ kg−1 K−1

E activation energy 139 kJ mole−1

g gravity 9.8 m s−2

G geothermal heat flux 60 mW m−2

k thermal conductivity 2.2 W m−1 K−1

l length 10 km 3,000 km
L latent heat 3.3× 105 J kg−1

n Glen exponent 3
R gas constant 8.3 J mole−1 K−1

sin α slope 0.1 n/a
TM melting temperature 273 K
∆T surface temperature deficit 20 K 50 K
ρ ice density 917 kg m−3

Table 10.1: Typical values of constants for ice flow in glaciers and, where different,
ice sheets. The activation energy for ice flow is the value appropriate between −10◦

and 0◦ C. For temperatures less than −10◦, E = 60 kJ mol−1. For shear-dominated
flows such as ice sheets, it is the warmer value which is more relevant.

The two important shear stresses are given by

τ13 = η

(
∂u

∂z
+ ε2∂w

∂x

)
, τ12 = η

(
∂u

∂y
+ ε2 ∂v

∂x

)
, (10.17)

and the second stress invariant τ is given by

τ 2 = τ 2
13 + τ 2

12 + ε2
[

1
2

(
τ 2
11 + τ 2

22 + τ 2
33

)
+ τ 2

23

]
; (10.18)

for Glen’s flow law, the dimensionless viscosity is

η =
1

A(T )τn−1
, (10.19)

where A(T ) is the scaled (with [A]) temperature dependent rate factor. If we now
put ε = 0 (the shallow ice approximation) we see that

τ ≈ η|∇u|, (10.20)
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where ∇ = (∂/∂y, ∂/∂z), and for Glen’s law,

η = A−1/n|∇u|−(n−1)/n (10.21)

(note n = 1 for a Newtonian flow; Glen’s law usually assumes n = 3); the determi-
nation of velocity distribution in a cross section S of a glacier then reduces to the
elliptic equation for u in S (putting µ = 0 and ε = 0 in (10.12)1):

∇.[η{A, |∇u|}∇u] = −1 in S, (10.22)

with appropriate boundary conditions for no slip at the base being u = 0 on z = b,
and the no stress condition at z = s is, from (10.13)1 and (10.17) with sy ≈ 0 and
ε = 0, ∂u/∂z = 0. The scalar s (independent of y) is determined through prescription

of the downslope ice volume flux,

∫

S

u dy dz = Q, which will depend on x and t, but

can be presumed to be known. In general, this problem requires numerical solution.
Analytic solutions are available for constant A and a semi-circular cross section, but
the free boundary choice of s cannot then be made.

Most studies of wave motion and other dynamic phenomena ignore lateral varia-
tion with y, and in this case (with τ13 = 0 on z = s) (10.14) gives

τ13 = (1− µsx)(s− z), (10.23)

and Glen’s law is, approximately,

∂u

∂z
= A(T ) |τ13|n−1 τ13 = A(T ) |1− µsx|n−1 (1− µsx)(s− z)n. (10.24)

If A = 1 is constant, then two integrations of (10.24) give the ice flux Q =

∫ s

b

u dz as

Q = ubH + |1− µsx|n−1 (1− µsx)
Hn+2

n + 2
, (10.25)

where H = s − b is the depth, and ub is the sliding velocity. Integration of the
mass conservation equation, together with the basal velocity condition (10.7) and the
kinematic surface boundary condition (10.8), then leads to the integral conservation
law

∂H

∂t
+

∂Q

∂x
= a, (10.26)

where a is the dimensionless accumulation rate. (10.26) is an equation of convective
diffusion type, with the diffusive term being that proportional to µ. For a glacier,
it is reasonable to assume that 1 − µsx > 0, meaning that the ice surface is always
inclined downhill, and in this case the modulus signs in (10.25) are redundant. In
essence, this unidirectionality of slope is what distinguishes a glacier from an ice cap
or ice sheet.

Note that if transverse variations were to be included, we should solve

∂S

∂t
+

∂Q

∂x
= a, (10.27)

where S is the cross sectional area, and Q would be given by Q =

∫

S

u dS, where u

solves (10.22) in the cross section S, together with appropriate boundary conditions.
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10.2.2 Ice sheets

A model for ice sheets can be derived in much the same way — typical aspect ratios
are 10−3 — but there is no ‘downslope’ gravity term ρg sin α (effectively α = 0), and
the appropriate balance determines the driving shear stress at the base in terms of the
surface slope. Effectively, the advection term is lost and µ = 1. Another difference is
that x ∼ y ∼ l (∼ 3000 km) while z ∼ 3 km is the only small length scale.

We will illustrate the scaling in two dimensions; the three dimensional version is
relegated to the exercises (question 10.4). In two dimensions, we write the deviatoric
stresses as

τ11 = −τ33 = τ1, τ13 = τ3. (10.28)

Then the governing equations are

ux + wz = 0,

0 = −px + τ1x + τ3z,

0 = −pz + τ3x − τ1z − ρg,

ε̇ij = Aτn−1τij. (10.29)

The surface stress boundary conditions are, on z = s,

(−p + τ1)sx − τ3 = −pasx,

τ3sx − (−p− τ1) = pa; (10.30)

at the base z = b(x, y, t), we prescribe the velocity:

u = ub, w = ubx; (10.31)

and on z = s, the kinematic condition is

w = st + usx − a. (10.32)

We scale the variables by putting

u ∼ U ; w ∼ [a];

x ∼ l; z, b, s ∼ d; t ∼ l/U ;

τ3 ∼ [τ ]; A ∼ [A]; a ∼ [a];

p− pa − ρig(s− z) ∼ ε[τ ];

τ1 ∼ ε[τ ], (10.33)

where

ε =
d

l
. (10.34)

An appropriate balance of terms is effected by choosing

U = 2[A][τ ]nd =
[a]

ε
, [τ ] = ρgdε, (10.35)
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and this leads to

d =

(
[a]ln+1

2[A](ρg)n

) 1
2(n+1)

, (10.36)

and thus

ε =

(
[a]

2[A](ρg)nln+1

) 1
2(n+1)

, (10.37)

and the typical values of the constants in table 10.1 do lead to a depth scale of the
correct order of magnitude, d = 3595 m, so that ε ∼ 10−3.

The corresponding dimensionless equations are

ux + wz = 0,

0 = −sx + τ3z + ε2 [−px + τ1x] ,

0 = −pz + τ3x − τ1z,(
uz + ε2wx

)
= Aτn−1τ3,

2ux = Aτn−1τ1,

τ 2 = τ 2
3 + ε2τ 2

1 , (10.38)

and the boundary conditions are, on z = s:

τ3 + ε2(p− τ1)sx = 0,

τ3sx + p + τ1 = 0,

w = st + usx − a; (10.39)

at the base z = b(x, y, t):
u = ub, w = ubx. (10.40)

The shallow ice approximation puts ε = 0, and then we successively find

τ3 = −sx(s− z), τ = |sx|(s− z), (10.41)

whence
p + τ1 = [ssx]x (s− z) + 1

2(z
2 − s2)sxx, (10.42)

and, if we assume that A = 1 is constant, the ice flux is
∫ s

b

u dz = ubH +
Hn+2

n + 2
|sx|n−1 (−sx) , (10.43)

so that conservation of mass leads to

∂H

∂t
=

∂

∂x

[
Hn+2

n + 2
|sx|n−1sx −Hub

]
+ a, (10.44)

a nonlinear diffusion equation for the depth H, since s = H + b.
The three-dimensional version of this equation is (with ∇ = (∂/∂x, ∂/∂y))

Ht = ∇.

[{
|∇s|n−1Hn+2

n + 2
∇s

}
−Hub

]
+ a. (10.45)

The term in the sliding velocity ub is apparently a convective term, but in fact the
sliding law usually has ub in the direction of shear stress, whence ub ∝ −∇s, and
this term also is diffusive.
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Boundary conditions

Normally one would expect a boundary condition to be applied for (10.45) at the
margin of the ice sheet, whose location itself may not be known. For an ice sheet
that terminates on land, this condition would be H = 0 at the margin, but since
the diffusion equation (10.45) is degenerate, in the sense that the diffusion coefficient
vanishes where H = 0, no extra condition to specify the margin location is necessary,
other than requiring that the ice flux also vanish where H = 0.

A different situation pertains for a marine ice sheet which terminates (and is
grounded), let us suppose, at the edge of the continental shelf. Then the margin po-
sition is known, and the ice thickness and flux are finite. In this case, the appropriate
condition is to prescribe H at the margin, on the basis that the ice (approximately)
reaches flotation there.

A more representative condition for marine ice sheets occurs when the grounded
ice extends into an ice shelf before the continental shelf edge is reached. Extended
ice shelves occur in the Antarctic ice sheet, two notable examples being the Ronne-
Filchner ice shelf and the Ross ice shelf. The grounding line where the ice changes from
grounded ice to floating ice is a free boundary whose location must be determined.
The appropriate boundary condition for the ice sheet at the grounding line is bound
up with the mechanics of the ice shelf, whose behaviour is altogether different; the
mechanics of ice shelves is studied in section 10.2.6, and the problem of determining
the grounding line is studied in section 10.2.7.

10.2.3 Temperature equation

Although the isothermal models are mathematically nice, they are apparently not
quantitatively very realistic. For a glacier, probably the neglect of variation of the rate
parameter A(T ) in the flow law is as important as the assumption of a two-dimensional
flow, although the possible coupling of temperature to water production and basal
sliding is also significant. For ice sheets, temperature variation is unquestionably
significant, and cannot in practice be neglected.

Boundary conditions

The ice temperature is governed by the energy equation (10.2), and it must be supple-
mented by suitable boundary conditions. At the ice surface, an appropriate boundary
condition follows from consideration of energy balance, much as in chapter 3, but for
purposes of exposition, we suppose that the ice surface temperature is equal to a
prescribed air temperature, thus

T = TA at z = s. (10.46)

The boundary conditions at the base are more complicated. While the ice is
frozen, we prescribe a geothermal heat flux G, and presume the ice is frozen to the
base, so that there is no slip, thus

−k
∂T

∂n
= G, T < TM , u = 0 at z = b, (10.47)
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where TM is the melting temperature, which depends weakly on pressure; n is the
unit normal pointing upwards at the base. Classically, one supposes that when T
reaches TM , a lubricating Weertman film separates the ice from the bed, allowing slip
to take place, so that we have a sliding velocity u = ub, in which, for example, ub

is a function of basal shear stress τb. The details of the calculation of this sliding
velocity are detailed in section 10.3. For the moment it suffices to point out that the
transition from no sliding to a full sliding velocity must occur over a narrow range of
temperature near the melting point, when only a partial water film is present. In this
régime, there is no net production of water at the base, the temperature is essentially
at the melting point, and there is sliding, but this is less than the full sliding velocity
ub; we call this the sub-temperate régime:

−k
∂T

∂n
= G + τbu, T = TM , 0 < u < ub. (10.48)

The term τbu represents the frictional heat delivered to the base by the work of
sliding.7

When the water film is completely formed, there is net water production at the
base, and the sliding velocity reaches its full value; this is the temperate régime:

0 < −k
∂T

∂n
< G + τbu, T = TM , u = ub. (10.49)

In all the above régimes, the ice above the bed is cold. When the heat flux −k
∂T

∂n
reaches zero, the ice above the bed becomes temperate and moist, containing water.
In this case the energy equation must be written as an equation for the enthalpy

h = cp (T − TM) + Lw, (10.50)

where L is latent heat, and w is the mass fraction of water inclusions, and the in-
equalities T ≤ TM in the above conditions can be replaced by the inequalities h ≤ 0.
Proper formulation of the correct thermal boundary condition when h > 0 now re-
quires an appropriate formulation for the enthalpy flux qn when w > 0, and this
requires a description of moisture transport in the moist ice. This goes some way
beyond our present concerns, and is not pursued further here.

Non-dimensionalisation

With variables scaled as in the previous section for an ice sheet, the temperature
equation for an ice sheet may be written approximately as

Tt + u.∇T =
ατ 2

η
+ βTzz, (10.51)

7An alternative formulation combines the frozen and sub-temperate régimes by allowing the
sliding velocity to be a function of temperature near the melting point. This may be a simpler
formulation to use in constructing numerical solutions.
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where T −TM is scaled with ∆T (a typical surface temperature below melting point).
The stress invariant τ is related to the horizontal velocity uH = (u, v) by

τ ≈ η

∣∣∣∣
∂uH

∂z

∣∣∣∣ = (s− z)|∇s|, (10.52)

since the horizontal stress vector τ = (τ13, τ23) satisfies

τ = η
∂uH

∂z
= −(s− z)∇s. (10.53)

The parameters α and β are given by

α =
gd

cp∆T
, β =

κ

d[a]
, (10.54)

where d is the depth scale, cp is the specific heat, g is gravity, κ =
k

ρcp
is the thermal

diffusivity, and [a] is accumulation rate. Using the values in table 10.1, together with
d = 3,500 m, we find that typical values for an ice sheet are α ∼ 0.3, β ∼ 0.1. We see
that viscous heating (the α term) is liable to be significant, while thermal conduction
is small or moderate.

The dimensionless forms of the temperature boundary conditions (10.46)–(10.49)
take the form

T = TA at z = s, (10.55)

where the scaled surface temperature TA is negative and O(1). At the base z = b, we
have

−∂T

∂n
= Γ, T < 0, u = 0,

−∂T

∂n
= Γ +

ατbu

β
, T = 0, 0 < u < ub,

0 < −∂T

∂n
< Γ +

ατbu

β
, T = 0, u = ub, (10.56)

where

Γ =
Gd

k∆T
. (10.57)

For values of the parameters in table 10.1, and with d = 3,500 m, we have Γ ≈ 1.9, so
that the geothermal heat flux is significant, and temperature variation is important.

The dimensional rate factor in the flow law is modelled as

A = A0 exp

(
− E

RT

)
, (10.58)

and in terms of the non-dimensional temperature, this can be written in the form

A = [A] exp

[
E

RTM

{
1−

(
1 +

∆T

TM
T

)−1
}]

, (10.59)

636



where

[A] = A0 exp

(
− E

RTM

)
. (10.60)

Assuming ∆T ' TM , we can write (10.58) in the approximate form

A ≈ eγT , (10.61)

where now A is the dimensionless rate factor, and

γ =
E∆T

RT 2
M

. (10.62)

Using the values for the activation energy E and gas constant R in table 10.1, we
find γ ≈ 11.2. Because this relatively large value occurs in an exponent, its largeness
is enhanced.8

The temperature equation for a (two-dimensional) valley glacier is the same as
(10.51), although in the definition of α, we replace d by l sin α. With the previ-
ous scalings, (10.52) is corrected by simply replacing |∇s| in the last expression by
|1− µsx|). Although the scales are different, typical values of α and β (from table
10.1) are α ∼ 0.25, β ∼ 0.29, and thus of significance. On the other hand, geothermal
heat is of less importance, with a typical estimate being Γ ≈ 0.17.9

10.2.4 A simple non-isothermal ice sheet model

The fact that the ice sheet model collapses to a simple non-linear diffusion equation
(10.45) when the rate coefficient is independent of temperature raises the question of
whether any similar simplification can be made when temperature dependence is taken
into account. The answer to this is yes, provided some simplifying approximations
are made. Before doing this, we revisit the non-dimensionalisation in (10.33). The
balance of terms in (10.35) is based on the assumption that shearing is important
throughout the thickness of the ice. However, this is not entirely accurate. The
largeness of the rheological coefficient γ implies that shearing will be concentrated
near the bed, where it is warmest. This effect is amplified by the smallness of β, which
means that temperature gradients may be confined to a thin basal thermal boundary
layer, and also by the largeness of the Glen exponent n, which increases the shear
near the bed. To allow for shearing being restricted to a height of O(ν) ' 1 above
the bed, we adjust the balance in (10.35) by choosing

U = 2[A][τ ]nνd, (10.63)

8However, the value of E is smaller below −10◦ C, which serves to modify the severity of the
temperature dependence of A at cold temperatures.

9This raises an interesting issue in the modelling of glaciers. So little heat is supplied geothermally
that it seems difficult to raise the ice temperature much above the surface average value anywhere.
In practice, the presence of crevasses allows meltwater and rainfall to access the glacier bed, and
the re-freezing of even a modest depth of water enormously enhances the effective heat supplied to
the bed via the latent heat released. For example, a meltwater supply of 10 cm per year to the bed
raises the effective value of Γ to 2.9.
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with the other choices remaining the same. The change to the depth scale in (10.36) is
obtained by replacing [A] by ν[A]. We will choose ν below. Note that If ν = 0.1, then
the depth scale is increased by a factor of 101/8 ≈ 1.33 to 4,794 m, still appropriate
for large ice sheets.

The shallow ice approximation then leads to the model

Tt + u .∇T =
α

ν
τn+1eγT + βTzz,

ν
∂u

∂z
= τn−1τeγT ,

Ht + ∇.

{∫ s

b

u dz

}
= a,

τ = −(s− z)∇s, (10.64)

where H = s − b is the depth, u = uH = (u, v) is the horizontal velocity, and α, β
and γ retain their earlier definitions in (10.54) and (10.62).

We now suppose that γ ) 1 and β ' 1. The temperature then satisfies the
approximate equation

Tt + u .∇T = 0, (10.65)

where also (10.64)2 implies the plug flow u = u(x, y). This ‘outer’ equation is valid
away from the base, where there must be a basal boundary layer and a shear layer in
order to satisfy velocity and temperature boundary conditions.

For simplicity, let us consider the particular case of steady flow over a flat bed,
so that b = 0, H = s, and time derivatives are ignored. The vertical velocity for the
plug flow is

w ≈ −z∆, ∆ = ux + vy, (10.66)

so that T satisfies
uTx + vTy − z∆Tz = 0. (10.67)

In two dimensions, it is easy to solve this, because there is a stream function. For
example, if v ≡ 0, then the general solution is T = f(zu). Similarly, if u ≡ 0, then
T = f(zv). It is not difficult to see that the general solution for a two-dimensional
flow is then T = f(z|u|).

This suggests that we seek solutions in the form

T = f(zU), U = U(x, y). (10.68)

Note that U is defined up to an arbitrary multiple. Substituting this into (10.67), we
find that U satisfies the equation

( u

U

)

x
+

( v

U

)

y
= 0, (10.69)

whence there is a function χ such that

u = Uχy, v = −Uχx. (10.70)
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Note that (10.64)2,4 imply that
u = −K∇s (10.71)

for some scalar K, and therefore (10.70) implies that ∇s.∇χ = 0, and the level sets
of s and χ form an orthogonal coordinate system. In particular, the coordinate −s
points down the steepest descent paths of the surface z = s, while the coordinate χ
tracks anti-clockwise round the contours of s. Note that for a steady flow in which a
is finite, there can be no minima of s, and the flow is everywhere downhill. In general,
the contours of s are closed curves, and the coordinates −s, χ are like generalised
polar coordinates. Complications arise if there are saddles, but these simply divide
the domain into different catchments, each of which can be treated separately.

If we change to independent coordinates s and χ, then we find, after some algebra,

∂

∂s

(
U

|u|

)
= − K

|u|3 (uvχ − vuχ) . (10.72)

Let θ be the angle of the flow direction to the x axis, so that tan θ =
v

u
. Calculating

the derivative of θ, we then find that the equation (10.72) takes the form

∂

∂s

(
U

|u|

)
= − 1

|∇s|
∂θ

∂χ
, (10.73)

and this is our basic equation to determine U . Note that in a two-dimensional flow

where
∂

∂χ
= 0, we regain U = |u| as before.

A more user-friendly version of (10.73) follows from the following geometrical

considerations. From (10.70), we have |∇χ| = |u|
U

, and since s and χ are orthogonal,

it follows that
dχ

dσ
=
|u|
U

(10.74)

on level contours of s, where σ is arc length measured anti-clockwise. Now the
curvature of a level s contour10 is defined by

κ =
dθ

dσ
. (10.75)

Therefore
∂θ

∂χ
=

κU

|u| ; in addition distance ξ at the base below a steepest descent path

on the surface satisfies dξ = − ds

|∇s| , and therefore (10.73) can be written in the form

∂

∂ξ

(
U

|u|

)
=

Uκ

|u| , (10.76)

10Strictly this is twice the mean curvature, since in three dimensions the other radius of curvature
of the level s contours is infinite.
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with solution

U = |u| exp

[∫ ξ

κ dξ

]
. (10.77)

The constant of integration can be chosen arbitrarily.
Given a surface z = s(x, y), we find the level contours and the steepest descent

paths, and we compute from the geometry of the contours their curvature κ. On any
steepest descent path, (10.77) then gives U , and the function f is determined by the
requirement that the surface temperature

Ts = f(sU). (10.78)

Along any flow path, sU is a monotone increasing function of −s (see question 10.5),
and therefore (10.78) determines f uniquely. Question 10.6 shows a worked example
in the particular case of a cylindrically symmetric ice sheet. Typically, with surface
temperatures being lower at higher elevation, the outer temperature profiles thus
constructed are inverted, i. e., they are colder at depth. There is then an inversion
near the base, where a thermal boundary layer reverses the temperature gradient.

Thermal boundary layer structure

We now consider the equations (10.64) near the base of the ice sheet. We will restrict
our attention to the case where the ice is at the melting point, but where sliding is
negligible. It is straightforward to deal with other cases also.

Away from the base, the temperature satisfies (10.68). More specifically (see
question 10.5), we can write the outer solution in the form

T = f

(
z

s

∫ s0

s

a

J
ds

)
, (10.79)

where the integral is along a flow line χ = constant, and J is the Jacobian

J = −∂(s, χ)

∂(x, y)
> 0 (10.80)

of the transformation from (x, y) to (−s, χ). Here s0 is the surface elevation at the
ridge forming the ice divide where the flow line starts.

Insofar as we might suppose the surface temperature decreases with increasing
elevation, it is reasonable to suppose that f is an increasing function of its argument,
and thus the temperature in (10.79) increases with height. As z → 0, T → f(0) < 0,
and there is a temperature inversion in a thermal boundary layer through which
T → 0. In this layer, the plug flow velocity is unaffected, as the exponential terms
are negligible. We write

z = β1/2Z, (10.81)

so that the temperature equation takes the approximate form

uTx + vTy − Z∆TZ = TZZ . (10.82)
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It is convenient again to write this in terms of the coordinates s, χ, Z, when the
equation becomes

−J [UTs − ZUsTZ ] = TZZ , (10.83)

with boundary conditions

T = 0 on Z = 0,

T → f(0) as Z →∞. (10.84)

We can simplify this by defining

X =

∫ s0

s

ds

J
, Ψ = ZU, (10.85)

which reduces the problem to

ΨZTX −ΨXTZ = TZZ . (10.86)

A further Von Mises transformation to independent variables (X, Ψ) reduces this to
a diffusion equation, for which a similarity solution is appropriate, and this is given
by

T = f(0)erf

[
ZU

2
√

Ξ

]
, (10.87)

where

Ξ =

∫ X

0

U dX =

∫ s0

s

U ds

J
. (10.88)

A uniform approximation is then given by

T = f

(
z

s

∫ s0

s

a

J
ds

)
− f(0)erfc

{
zU

2
√

βΞ

}
. (10.89)

To illustrate the consequent temperature profiles, we make simplifying assump-
tions. For a one-dimensional flow in the x–direction, we have χ = y, J = −sx, U = u.
Suppose a = 1, u = x, s = 1 − x2 and that the surface temperature is T |s = −s.We
then find that f(x) = −(1− x2), and thence

T = −
[
1−

(
zx

1− x2

)2
]

+ erfc

[
z√
2β

]
. (10.90)

Figure 10.7 shows two profiles at distances of x = 0.1 and x = 0.5 along the flow line,
which resemble the sorts of profiles which are typically measured (and which are also
found in direct numerical simulations).
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Figure 10.7: Typical temperature profiles at x = 0.1 and x = 0.5 for the uniform
approximation (10.89), for the particular assumptions in (10.90). The value of β =
0.1.

Shear layer

Embedded within the thermal boundary layer is a thinner shear layer of thickness
O(ν), to be determined. From the thermal boundary layer solution (10.87), we have

T ∼ f(0)UZ√
πΞ

as Z → 0; additionally we require T ∼ 1

γ
in the shear layer in order

that there be non-zero shear. Thus we define

θ = γT, ν =

√
β

γ
, (10.91)

which confirms that ν '
√

β, and thus the shear layer is indeed embedded within
the thermal boundary layer. Defining z = νζ, the shear layer equations become, to
leading order,

τ = −s∇s,
∂u

∂ζ
= τn−1τeθ,

0 = Aτn+1eθ + θζζ , (10.92)

where
A =

α√
β

. (10.93)

Using the values α ∼ 0.3, β ∼ 0.1, then A ≈ 1, and it is sensible to suppose formally
that α ∼

√
β, so that A ∼ O(1). Suitable boundary conditions for the equations are
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then (supposing sliding is negligible)

u = 0, θ = 0 at ζ = 0,

θ ∼ f(0)Uζ√
πΞ

as ζ →∞. (10.94)

Integrating the temperature equation in the form θζζ + Aτ .uζ = 0, we find that
indeed u = −K∇s, where

K =
θζ |0∞

As|∇s|2 . (10.95)

Direct integration of the temperature equation gives the solution in the form

θ = −2 ln

[
B cosh

(√
λ

2

ζ

B
+ C

)]
, (10.96)

where
λ = Aτn+1. (10.97)

Applying the boundary conditions, we find after some algebra that, if we define
f(0) = −TR, then

K =
TRU(1− tanh C)√

πΞAs|∇s|2
, (10.98)

where

cosh C =
TRU√
2λπΞ

. (10.99)

(10.98) defines K implicitly and non-locally along a flow line, since (10.77) implies
that U ∝ K, and thus (10.88) implies that Ξ involves an integral of K. Given s,
we can determine K and hence u, and this can be used to evolve the surface via the
diffusion equation

st = ∇. (sK∇s) + a. (10.100)

This is not strictly accurate, since the (outer) temperature is assumed stationary.
However, the outer temperature is only involved in the determination of the velocity
field through the prescription of the ridge temperature −TR. If the ridges are sta-
tionary, or if the ridge temperature is constant, then the derivation above remains
appropriate; if not, TR must be determined as well.

To illustrate how K is determined, consider the two-dimensional case, where x
is in the direction of flow. We then have χ = y, J = −sx, κ = 0, X = x, U = u,

Ξ =

∫ x

0

u dx. In addition, suppose that TR = 1 and that C is sufficiently large that

1− tanh C ≈ 2e−2C ≈ 1
2sech

2C. Formally this is the case if A ' 1. Define

L = 2
√

Ξ; (10.101)

we then find that
KL′ =

√
πsn|∇s|n−1. (10.102)
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In addition, U = 1
2LL′ = K|∇s|; eliminating K, we can derive the differential equa-

tion for L
LL′2 = 2

√
πsn|∇s|n, (10.103)

subject to L(0) = 0. Solving this, we can then determine K from (10.102).
More generally, with L still defined by (10.101) and TR = 1, (10.98) and (10.99)

lead to

K =
LLX

2W |∇s| =
LX − {L2

X − 2πAsn+1|∇s|n+1}1/2

√
πAs|∇s|2

, (10.104)

where

W = exp

{∫ ξ

0

κ dξ

}
. (10.105)

Solving for LX , we find

L2
X =

8
√

πW 2τn

L(4W −
√

πAτ)
; (10.106)

both L and hence K can be determined from (10.106).
Reverting to two-dimensional flow for a moment, we might suppose that for suffi-

ciently small x, u ∼ x. Since with X = x and W = 1, u = 1
2LLx, this suggests L ∼ x,

and Lx ≈ L′ is constant. From (10.106) (with also τ small), we then have

L ≈ 2
√

πτn

L′2 (10.107)

(note that this is only consistent with L ∼ x if τ ∼ x1/n). From (10.104), we then
have

K ≈
√

π

L′ sn|s′|n−1, (10.108)

and (10.100) takes the form

st = K ∂

∂x

[
sn+1 |sx|n−1 sx

]
+ a, (10.109)

where

K =

√
π

L′ . (10.110)

One can show (cf. (10.118) below) that for small x, we indeed have τ ∼ x1/n as
required, so that this approximation is consistent. The value of L′ is determined by
the boundary condition at the margin. For example, if we suppose (10.109) applies
all the way to the margin at x = 1, where s = 0, then we can show for the steady
state ice sheet that

s(0) = s0 =

(
2n + 1

n + 1

)n/(2n+1)

, (10.111)

and that u ≈
√

πx

L′s0
; consistency with u ≈ 1

2LL′ ≈ 1
2L

′2x then implies thsat

L′ =

(
2
√

π

s0

)3

, K =
(πs0

2

)1/3

. (10.112)
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The success of this approach suggests an extension to the three-dimensional model
(10.104). If we suppose LX and W are approximately constant, then we find

L ≈ 8
√

πW 2τn

L2
X(4W −

√
πAτ)

, K ≈ 4
√

πWτn

LX |∇s|(4W −
√

πAτ)
, (10.113)

and thus (10.100) takes the form

st = ∇. [D∇s] + a, (10.114)

where

D =

√
π

LX

sn+1|∇s|n−1

{
1− A

√
πs|∇s|
4W

} . (10.115)

10.2.5 Using the equations

Nonlinear diffusion

The derivation of (10.114) shows that for a temperature-dependent ice flow law, one
reasonably obtains a nonlinear diffusion equation to govern the ice sheet evolution.
Similarly, for flow over a flat base, h = 0, with no sliding, the isothermal ice sheet
equation (10.45) is just

st = ∇.

[
sn+2|∇s|n−1

n + 2
∇s

]
+ a, (10.116)

which for Glen’s flow law would have n = 3. This is a degenerate nonlinear diffusion
equation, and has singularities at ice margins (s = 0) or divides (where ∇s/|∇s|
is discontinuous). In one space dimension, we have near a margin x = xm(t) where
a < 0 (ablation), assuming zero ice flux there,

s ∼ (a/|ẋm|)(xm − x) if ẋm < 0 (retreat),

s ∼
(

2n + 1

n

) n
2n+1

[(n + 1)ẋm]
1

2n+1 (xm − x)
n

2n+1 if ẋm > 0 (advance).

(10.117)

This is the common pattern for such equations: margin retreat occurs with finite slope,
while for an advance, the slope must be infinite. Consequently, there is a waiting time
between a retreat and a subsequent advance, while the front slope grows.

Near a divide x = xd, where sx = 0 and a > 0, s is given by

s ∼ s0(t)−
(

n

n + 1

) [
(n + 2)(a− ṡ0)

sn+2
0

]1/n

|x− xd|(n+1)/n, (10.118)

and thus the curvature is infinite. Singularities of these types need to be taken into
account in devising numerical methods.
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Thermal runaway

One of the interesting possibilities of the thermomechanical coupling between flow
and temperature fields is the possibility of thermal runaway, and it has even been
suggested that this may provide an explanation for the surges of certain thermally
regulated glaciers. The simplest model is that for a glacier, with exponential rate
factor, thus

Tt + u .∇T = ατn+1eγT + βTzz, (10.119)

where the stress is given by
τ = s− z. (10.120)

The simplest configuration is the parallel sided slab in which s = constant, u =
(u(z), 0, 0), so that

∂T

∂t
= α(s− z)n+1eγT + β

∂2T

∂z2
, (10.121)

with (say)
T = −1 on z = s, Tz = −Γ on z = 0. (10.122)

For given s, (10.121) will exhibit thermal runaway for large enough α, and T → ∞
in finite time. As the story goes, this leads to massive melting and enhanced sliding,
thus ‘explaining’ surges. The matter is rather more complicated than this, however.
For one thing, s would actually be determined by the criterion that, in a steady

state, the flux

∫ s

0

u dz is prescribed, = B say, where B would be the integrated ice

accumulation rate from upstream (=

∫
a dx).

Thus even if we accept the unrealistic parallel slab ‘approximation’, it would be
appropriate to supplement (10.121) and (10.122) by requiring s to satisfy

∫ s

0

u dz = B. (10.123)

Since the flow law gives
∂u

∂z
= (s− z)neγT , (10.124)

we find, if u = 0 on z = 0, that (10.123) reduces to
∫ s

0

(s− z)n+1eγT dz = s. (10.125)

Thermal runaway is associated with multiple steady states of (10.121), in which case
we wish to solve

0 = α(s− z)n+1eγT + βTzz,

T = −1 on z = s,

Tz = −Γ on z = 0,

Tz = −
[
Γ +

αB

β

]
on z = s. (10.126)
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Putting ξ = s− z, we solve
Tξξ = −Aξn+1eγT ,

T − 1, Tξ = Γ +AB on ξ = 0, (10.127)

where
A =

α

β
, (10.128)

as an initial value problem. Tξ is monotone decreasing with increasing ξ, and thus
there is a unique value of s such that Tξ = Γ there. It follows that there is a unique
solution to the free boundary problem, and in fact it is linearly stable. It then seems
that thermal runaway is unlikely to occur in practice.

A slightly different perspective may allow runaway, if we admit non-steady ice
fluxes. Formally, we can derive a suitable model if A = O(1), β → ∞. In this case,
we can expect T to tend rapidly to equilibrium of (10.121), and then s reacts more
slowly via mass conservation, thus

st + qx = a,

q =
1

A [Tz]
s
0. (10.129)

An x-independent version of (10.129), consistent with the previous discussion, is

∂s

∂t
= B − q(s), (10.130)

and this will allow relaxation oscillations if q(s) is multivalued as a function of s —
which will be the case. Surging in this sense is conceivable, but the limit β → ∞
is clearly unrealistic, and unlikely to be attained. The earlier conclusion is the more
likely.

It is also possible to study thermal runaway using the more realistic approach
involving a basal shear layer, as in section 10.2.4, and allowing for the separate thermal
boundary conditions in (10.56). Although multiple solutions are possible, they are in
reality precluded by the transition from one basal thermal régime to another as the
basal ice warms. In the last thermal régime, where the basal ice becomes temperate,
the dependence of the flow law on moisture content could also allow a runaway, but
one which now would involve excess moisture production. Whether this can occur
will depend on whether the resultant drainage to the basal stream system can be
carried away subglacially, but this process requires a description of water flow within
and below the glacier.

10.2.6 Ice shelves

When an ice sheet flows to the sea, as mostly occurs in Antarctica, it starts to float
at the grounding line, and continues to flow outwards as an ice shelf. The dynamics
of ice shelves can be described by an approximate theory, but this is very different
from that appropriate to ice sheets.
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We begin with the equations in the form (10.38) and (10.39), as scaled for the ice
sheet. These must be supplemented by conditions on the floating base z = b. To be
specific, we take the level z = 0 to be sea level. The water depth at z = b is thus
−b, and the resulting hydrostatic pressure must balance the normal stress in the ice.
In addition, there is no shear stress. The general form of the (vector) stress balance
condition at an interface of this type which supports only a pressure pi is (cf. (10.6))

σ.n = −pin, (10.131)

and in addition to this there is a kinematic boundary condition. When written in
terms of the ice sheet scales, these boundary conditions become

−τ3 + ε2(−p + τ1)bx = (s + δb)bx,

s = −δb− ε2 [τ3bx + p + τ1] ,

w = bt + ubx −m, (10.132)

in which m is the bottom melting rate, and the parameter δ is given by

δ =
ρw − ρi

ρi
, (10.133)

where ρi and ρw are ice and water densities. The second of these conditions, the
flotation condition, essentially says that 90% of the ice is below the surface, as in
Archimedes’ principle.

Whereas the dominant force balance in the ice sheet is between shear stress and
horizontal pressure gradient, and longitudinal stresses are negligible, this is not true
in the ice shelf, where the opposite is true: shear stress is small, and the primary
balance is between longitudinal stress and horizontal pressure gradient. Therefore the
equations must be rescaled in order to highlight this fact. The issue is complicated
by the presence of two small parameters δ ∼ 0.1 and ε ∼ 10−3.

We suppose that the length scale for the ice shelf is x ∼ λ (relative to the horizontal
ice sheet scale), and that the depth scale is z ∼ ν, and we anticipate that ν ' 1. We
then find that a suitable balance of terms reflecting the dominance of longitudinal
stresses is given by writing

x ∼ λ, z, b ∼ ν, u ∼ 1

ν
, w ∼ λ,

p, τ1 ∼
δν

ε2
, τ3 ∼

δν2

λ
, τ ∼ δν

ε
, s ∼ δν. (10.134)

The governing equations become

ux + wz = 0,

0 = −sx + τ3z − px + τ1x,

0 = −pz − τ1z + ω2τ3x,(
uz + ω2wx

)
= ω2τn−1τ3,

2ux = τn−1τ1,

τ 2 = ω2τ 2
3 + τ 2

1 , (10.135)
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and the appropriate boundary conditions are, on the top surface z = δs:

τ3 + δ(p− τ1)sx = 0,

p + τ1 + δω2τ3sx = 0,

w = λδνst + δusx − λa; (10.136)

and on the base z = b:

τ3 + (p− τ1)bx = (s + b)bx,

s + b = −
(
p + τ1 + ω2τ3bx

)
,

w = νλbt + ubx − λm; (10.137)

in these equations,

ω =
νε

λ
' 1. (10.138)

The length scale is as yet essentially arbitrary; observations suggest λ <∼ 1. The
parameter ν is defined by the constraint that longitudinal stress balances longitudinal
strain rate, and this determines

ν =
ε

δ

(
δ

λA

)1/(n+1)

, (10.139)

where, if A varies with temperature, it is the ice upper surface (lowest) value that
should be used.11

We let ω → 0 in these equations; it follows that u ≈ u(x, t), τ ≈ |τ1|, whence
τ1 ≈ τ1(x, t); p + τ1 ≈ 0, so that τ3z ≈ sx − 2τ1x, and thus

τ3 ≈ (sx − 2τ1x) (z − δs) + 2δτ1sx. (10.140)

Applying the boundary conditions at z = b, we have

s = −b, 2τ1bx = (sx − 2τ1x) (b− δs) + 2δτ1sx, (10.141)

whence, integrating, we find
τ1 = −1

4b, (10.142)

and the integration constant (for (10.141)2) is taken to be zero on applying an aver-
aged force balance at the ice shelf front (see question 10.7). Thus we finally obtain
the stretching equations, noting that the ice thickness H ≈ −b to O(δ),

ux = 1
2

(
1
4H

)n
, νλHt + (uH)x = λ(a−m); (10.143)

the second equation is that of mass conservation, and is derived by integrating the
mass continuity equation. Note that the time scale for mass adjustment is O(νλ)' 1,
so that the ice shelf responds rapidly to changes in supply. We might suppose that

11This is opposite to the situation in an ice sheet, where it is the warmest (basal) ice which is
rate-controlling.
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the choice of length scale λ would be such that λ(a−m) = O(1), but in fact it is more
likely that the extent of an ice shelf is determined by the rate of calving at the front,
which is not treated here. Typical basal melt rates are comparable to accumulation
rates, of the order of ten centimetres a year in some models.

Suitable initial conditions for H and u would follow from continuity of ice flux
and depth across the grounding line, but the position of the grounding line x = xG

is not apparently determined. Let us anticipate that suitable conditions on H and u
are that

u→ 0, Hu→ qI as x→ xG; (10.144)

assuming steady conditions, it follows from (10.143) that

Hu = qI +

∫ x

xG

(a−m) dx. (10.145)

The solution for u follows by quadrature. In the particular case that a = m (and in
any case as x→ xG), we have Hu = qI , and thus

u =

{
(n + 1)

2

(qI

4

)n
}1/(n+1)

(x− xG)1/(n+1). (10.146)

In order to find a condition for qI and for the position of xG, we need to consider
the region near the grounding line in more detail, and this is done in the following
subsection.

10.2.7 The grounding line

In the transition region, we need to retain terms which are of importance in both ice
sheet and ice shelf approximations. This requires us to rescale the ice sheet scaled
variables in the following way:

x− xG ∼ γ, z, b ∼ β, s ∼ δβ, u ∼ 1

β
, w ∼ 1

γ
,

t ∼ β, p, τ1 ∼
δβ

ε2
, τ3 ∼

δβ2

γ
, τ ∼ δβ

ε
, (10.147)

where xG is the grounding line position; the parameters β and γ are defined by

β =
(ε

δ

) n
n+2 1

A
1

n+2

, γ = βε. (10.148)

This rescaling reintroduces the full Stokes equations. Denoting the rescaled variables
(except time) by capitals, and writing

x− xG(t) = γX, t = βt∗, (10.149)
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we derive the model

UX + WZ = 0,

0 = −SX + T3Z − PX + T1X ,

0 = −PZ − T1Z + T3X ,

UZ + WX = T n−1T3,

2UX = T n−1T1,

T 2 = T 2
3 + T 2

1 . (10.150)

The boundary conditions are the following. On the surface Z = δS,

T3 + δ(P − T1)SX = 0,

P + T1 + δT3SX = 0,

W = δ(γSt∗ − ẋGSX) + δUSX − γa, (10.151)

where ẋG =
dxG

dt∗
. On the base Z = B, when X > 0,

−T3 + (−P + T1)BX = (S + B)BX ,

S + B = − [P + T1 + T3BX ] ,

W = γBt∗ − ẋGBX + UBX − γm, (10.152)

and when X < 0,
W = 0, U = 0, (10.153)

where we assume that the sliding velocity is zero for grounded ice12

To leading order, we can approximate the top surface boundary conditions as
γ → 0 and also δ → 0 by

T3 = P + T1 = W = 0 on Z = 0. (10.154)

The kinematic condition at the shelf base is approximately

W = −ẋGBX + UBX on Z = B. (10.155)

In addition, the solution must be matched to the outer (sheet and shelf) solutions.
We consider first the ice sheet behaviour as x → xG. We suppose that the ice sheet
is described in one dimension by (10.45), thus

Ht = −qx + a, (10.156)

where the ice flux is (in ice sheet scaled variables)

q =
(s− b)n+2(−sx)n

n + 2
. (10.157)

12This simple assumption is not very realistic, since it is most likely that in the vicinity of the
grounding line, the basal ice will be at the melting point, and the sliding velocity will be non-zero.
Where ice streams go afloat, the velocity is almost entirely due to basal sliding.
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We can carry out a local analysis near xG similar to those in section 10.2.5. As
x→ xG, s− b→ 0 (since s− b ∼ β ' 1), but the ice flux is non-zero; in this case we
find that always

H = s− b ∼ C(xG − x)
n

2(n+1) , q ∼ qG =

(
n

2(n + 1)

)n C2n+2

n + 2
. (10.158)

When the surface slope is computed from this, we find that the requisite matching
condition for the slope written in terms of the transition zone scalings is that

SX ∼ −
nC

2(n + 1)

1

(−δX)
n+2

2(n+1)

as X → −∞. (10.159)

Clearly the presence of the small parameter δ does not allow direct matching of the
transition zone to the ice sheet.

The problem is easily resolved, however. There is a ‘joining’ region in which
X = X̃/δ, S = S̃/δ, and then also P, T1, W ∼ δ; the resultant set of equations is
easily solved (it is a shear layer like the ice sheet), and we find

S̃ = BG +

[
(−BG)2(n+1)/n − 2(n + 1)

n
{(n + 2)qG}1/nX̃

]n/(2n+2)

, (10.160)

where B = BG at x = xG. Expanding this as X̃ → 0, we find that the matching
condition for S in the transition zone as X → −∞ is

S ∼ −ΛX, (10.161)

where

Λ =
{(n + 2)qG}1/n

(−BG)(n+2)/n
. (10.162)

A final simplification to the transition zone problem results from defining

Π = P + S; (10.163)

to leading order in γ and δ, the transition problem is then

UX + WZ = 0,

ΠX = T3Z + T1X ,

ΠZ = −T1Z + T3X ,

UZ + WX = T n−1T3,

2UX = T n−1T1,

T 2 = T 2
3 + T 2

1 , (10.164)

together with the boundary conditions

T3 = W = 0 on Z = 0, (10.165)
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B = −(Π + T1 + T3BX),

T3(1−B2
X) = 2T1BX ,

W = (−ẋG + U)BX on Z = B, X > 0, (10.166)

and
W = U = 0 on Z = BG, X < 0. (10.167)

The matching conditions to the ice sheet may be summarised as

ΠX → −Λ, W → 0, T3 → −ΛZ as X → −∞, (10.168)

with the flow becoming the resultant pressure gradient driven shear flow at −∞.
Towards the ice shelf, a comparison of orders of magnitude shows firstly that

ν

β
=

(γ

λ

)1/(n+1)

' 1, (10.169)

and that in the ice shelf, the transition scaled variables are

S,B ∼ ν

β
, W ∼ γ

λ
, P, T1 ∼

ν

β
, T3 ∼

(
ν

β

)2 γ

λ
; (10.170)

note also that the ice shelf time scale νλ is much less than the transition zone time
scale β, so that it is appropriate in the transition zone to assume that the far field
ice shelf is at equilibrium, and thus described by (10.145) and (10.146). Bearing in
mind (10.169), it follows from this that suitable matching conditions for the transition
region are

T1 ∼ −1
4B, U ∼MX1/(n+1),

W → 0, B ∼ −qI

U
as X →∞, (10.171)

where

M =

{
(n + 1)

2

(qI

4

)n
}1/(n+1)

, (10.172)

and the flow becomes an extensional flow as X → ∞. It follows from integration of
the continuity equation between B and S that the ice flux to the ice shelf, qI , is given
by

qI = qG + ẋGBG. (10.173)

The top surface is defined by

S = (Π + T1)|Z=0 , (10.174)

and uncouples from the rest of the problem. The extra condition on Z = B, X > 0
in (10.166) should determine B providing ẋG is known. This is the basic conundrum
of the grounding line determination, since there appears to be no extra condition to
determine ẋG.
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The resolution of this difficulty has not yet been finally achieved. One might
wonder whether there is an extra condition hiding in the matching conditions (10.168)
or (10.171), but it appears not: the conditions on T3 and W as X → −∞ imply the
pressure gradient condition, while the condition on U as X → ∞ implies the other
three. It seems that the answer lies in the additional posing of contact conditions.
Specifically, for the solution in the transition region to have physical sense, we require
that the effective normal stress downwards, −σ33 − pw, be positive on the grounded
base, and we require the ice/water interface to be above the submarine land surface
on the floating shelf base. When written in the current scaled coordinates, these
conditions become

B + Π+ T1 > 0, X < 0,

B > BG, X > 0. (10.175)

In addition, we may add to these the condition that at the grounding line, the effective
normal stress is zero, whence

B + Π+ T1 = 0 at X = 0. (10.176)

Numerical solutions appear to be consistent with the idea that, for any given ẋG,
there is a unique value of Λ such that the contact conditions (10.175) and (10.176)
are satisfied. If this is true, then (10.162) determines the ice sheet flux qG at the
grounding line as a function of xG (through BG) and ẋG, and this provides the extra
condition (as well as s→ b as x→ xG−) for the determination of the grounding line
position.

10.2.8 Marine ice sheet instability

Much of the interest concerning grounding line motion concerns the possible insta-
bility of marine ice sheets. A marine ice sheet is one whose base is below sea level;
the major example in the present day is the West Antarctic Ice Sheet. Marine ice
sheets terminate at grounding lines, from which ice shelves protrude. Depending on
the slope of the submarine surface, they can be susceptible to instability, and it has
been postulated that fluctuations in sea level, for example, might cause a catastrophic
retreat of the grounding lines in West Antarctica, and consequent collapse of the ice
sheet.

To understand why this might be so, consider an ice sheet governed by the mass
conservation equation (10.156), and for simplicity (it does not affect the argument),
take the ice flux q = −Hx, so that

Ht = Hxx + a, (10.177)

with boundary conditions
Hx = 0 at x = 0,

H = HG(xG), −Hx = qG(H) at x = xG (10.178)
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Figure 10.8: Variation of qG[HG(x)] and the equilibrium flux q0 = ax for the bottom
depth profile HG indicated. Equilibria occur for the points of intersection of the two
flux curves, with instability occurring if q′0 > q′G. Thus points A and C are stable,
while B is unstable. The particular functions used are HG = 2x− 3

2x
2− 1

3x
3, qG = H3,

and q0 = 0.2(1 + x) (with the divide implicitly being at x = −1).

(note that we retain here the finite depth of the ice sheet at the grounding line).
HG(x) represents the depth of the land subsurface below sea level, and we assume
that qG is an increasing function of H, as suggested by (10.162), if Λ is constant.
There is a steady solution H = H0(x); note that since the ice sheet slopes down to
the ice shelf, we have H ′

0(xG) < H ′
G(xG).

Consider a situation such as that shown in figure 10.8, in which the subsurface
slopes upwards for part of the domain. In this case there can be three possible
equilibria, of which the middle one is unstable. The casual argument for this is the
following suggestion: if xG advances, then the ice sheet must deliver a larger flux q0;
however, assuming q′G(H) > 0, then in regions where H ′

G(x) < 0 (i. e., the bed slopes
upwards towards the grounding line), the actual flux delivered is less; consequently,
the ice builds up behind the grounding line, causing its further advance.

To demonstrate this mathematically, we linearise (10.177) and (10.178) about the
steady state H = H0(x), xG = x0

G, by putting H = H0(x) + η, xG = x0
G + γ; the

resulting linearised system for η is (eliminating γ)

ηt = ηxx,

ηx = 0 at x = 0,

−ηx = Kη at x = x0
G, (10.179)

where

K =
q′G(HG)H ′

G(x0
G)− a

H ′
G(x0

G)−H ′
0(x

0
G)

, (10.180)
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which has (stable) solutions η = e−λ2t cos λx providing λ tan λx0
G = K. If K > 0,

these are the only solutions, and the steady state is stable. However, if K < 0,
the first mode (with λx0

G < 1
2π) is replaced by an unstable mode η = eλ2t cosh λx,

where λ tanh λx0
G = −K. Therefore the steady state is unstable precisely if K < 0.

Consulting (10.180), and recalling that H ′
0(xG) < H ′

G(xG), it follows that the steady
state is unstable if

dqG

dxG
< a, (10.181)

as suggested in figure 10.8. Question 10.8 generalises this result to the case where
q = −D(H, Hx)Hx.

10.3 Sliding and drainage

The sliding law relates the basal shear stress τb to the basal sliding velocity ub. The
classical theory, enunciated by Lliboutry, Weertman, Nye, Kamb, and others, con-
siders ice flowing at the base of a glacier over an irregular, bumpy bedrock. The
ice is lubricated at the actual interface by the mechanism of regelation, or melting-
refreezing, which allows a thin film (microns thick) to exist at the ice-rock interface,
and allows the ice to slip. The drag is then due to two processes; regelation itself,
and the viscous flow of the ice over the bedrock. Regelation is dominant for small
wavelength roughness, while viscous drag is dominant for large wavelengths, and early
work emphasised the importance of a controlling (intermediate) wavelength (of sev-
eral centimetres). More recently, the emphasis has moved away from regelation and
has been put more on consideration of the viscous flow, and we do this here, assuming
no normal velocity of the ice as it slides over the bed.

A suitable model for discussion is the flow of a Newtonian fluid over a rough
bedrock of ‘wavelength’ [x] and amplitude [y], given by

y = hD(x) ≡ [y]h

(
x

[x]

)
, (10.182)

where y is now the vertical coordinate.13 The governing equations for two-dimensional
flow down a slope of angle α are

ux + vy = 0,

px = ρig sin α + η∇2u,

py = −ρig cos α + η∇2v, (10.183)

where η is the viscosity. We suppose that the glacier has a depth of order d, thus
providing a basal shear stress τb of order [τ ], which drives a shear velocity of order
[u], and these are related by

[τ ] = ρigd sin α =
η[u]

d
. (10.184)

13Because shortly we will use z for the complex variable x + iy.
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The basal boundary conditions are those of no shear stress and no normal flow, and
take the form

σnt =
τ2(1− h′2D)− 2τ1h′D

1 + h′2D
= 0, (10.185)

where
τ1 = 2ηux, τ2 = η(uy + vx), (10.186)

and
v = uh′D, (10.187)

both (10.185) and (10.187) being applied at y = hD(x). Note also that the normal
stress is

−σnn =
p(1 + h′2D) + τ1(1− h′2D) + 2h′Dτ2

1 + h′2D
. (10.188)

Because we describe a local flow near the base of the glacier, it is appropriate to
apply matching conditions to the ice flow above. In particular, we require τ2 → τb as
y becomes large, and hence

u ∼ ub +
τby

η
(10.189)

far from the bed.
We non-dimensionalise the equations by scaling

x, y ∼ [x], u, v ∼ [u], τb = [τ ]τ ∗, ub = [u]u∗,

p = pi +
ν[τ ]

σ
P, (10.190)

where
pi = pa + ρig(yi − y) cos α (10.191)

is the ice overburden pressure, and y = yi ∼ d is the ice upper surface (and taken as
locally constant); this leads to the non-dimensional set

ux + vy = 0,

νPx = σ2 +∇2u,

νPy = ∇2v, (10.192)

subject to the boundary conditions that

P → 0, u ∼ u∗ + στ ∗y as y →∞, (10.193)

and

(1− ν2h′2)(uy + vx)− 4νh′ux = 0,

v = νuh′, (10.194)

on the dimensionless bed y = νh (from (10.182). The corrugation σ and the aspect
ratio ν are defined by

σ =
[x]

d
, ν =

[y]

[x]
; (10.195)

657



ν is a measure of the roughness of the bed.
We will assume that both ν and σ are small. In consequence, the dimensionless

basal stress τ ∗ in (10.193) is uncoupled from the problem; however, integration of the
momentum equations over the domain yields an expression for τ ∗. In dimensional
terms, this relation is

τb =
1

L

∫ L

0

σn1 ds, (10.196)

where the integral is over a length L of the base y = hD, over which conditions are
taken to be periodic (alternatively, the limit L→∞ may be taken).

Evidently, the velocity is uniform to leading order, and therefore we write

u = u∗ + νU, v = νV, (10.197)

so that the problem reduces to

Ux + Vy = 0,

Px =
σ2

ν
+∇2U,

Py = ∇2V, (10.198)

with boundary conditions

U ∼ στ ∗

ν
y as y →∞, (10.199)

and

(1− ν2h′2)(Uy + Vx)− 4νh′Ux = 0,

V = (u∗ + νU)h′ (10.200)

on y = νh. When written in dimensionless terms, the overall force balance (10.196)
takes the form (with L now being dimensionless)

στ ∗

ν2
=

1

L

∫ L

0

[P (1 + ν2h′2) + 2(1− ν2h′2)Ux + 2νh′(Uy + Vx)]
h′ dx

1 + ν2h′2
. (10.201)

It is fairly clear from (10.201) that there is a distinguished limit σ ∼ ν2, which cor-
responds to the situation where sliding is comparable to shearing, and it is convenient
to adopt this limit as an example. We introduce a stream function ψ via

U = ψy, V = −ψx; (10.202)

then letting ν → 0 with σ ∼ ν2, we derive the reduced model

Px = ∇2ψy,

Py = −∇2ψx, (10.203)
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together with the boundary conditions

P, ψ → 0 as y →∞,

ψ = −u∗h(x), ψyy − ψxx = 0 on y = 0. (10.204)

The shear stress is determined by (10.201), whence to leading order (e. g., if h is
periodic with period 2π)

στ ∗

ν2
=

1

2π

∫ 2π

0

(P + 2ψxy)|y=0 h′ dx; (10.205)

more generally a spatial average would be used. Since the expression in brackets in
(10.205) is simply (minus) the normal stress, it is therefore also equal to the scaled
water pressure in the lubricating film, which from (10.190) can be written in the form

P + 2ψxy = −N∗, N∗ =
σ(pi − pw)

ν[τ ]
. (10.206)

The quantity N∗ is the dimensionless effective pressure at the bed. We come back to
this below.

A nice way to solve this problem is via complex variable theory. We define the
complex variable z = x + iy, and note that equations (10.203) are the Cauchy-
Riemann equations for the analytic function P + i∇2ψ. Consequently, ψ satisfies the
biharmonic equation, which has the general solution

ψ = (z̄ − z)f(z)−B(z) + (cc), (10.207)

where f and B are analytic functions and (cc) denotes the complex conjugate, as does
the overbar. The zero stress condition (10.204) requires f = −1

2B
′, and also B → 0

as z →∞ (with Im z > 0), and the last condition is then

B + B̄ = u∗h on Im z = 0. (10.208)

If h is periodic, with a Fourier series

h =
∞∑

−∞
ake

ikx, (10.209)

then B is simply given by

B = u∗
∞∑

1

ake
ikz (10.210)

(we can assume a0 = 0, i. e., the mean of h is zero). However, it is also convenient
to formulate this problem as a Hilbert problem. We define L(z) = B′′(z), which is
analytic in Im z > 0, and then L(z) = B′′(z̄) is analytic in Im z < 0. From (10.207),
∇2ψ = 4ψzz̄ = −2(L+ L̄), and therefore P + i∇2ψ +4iL = P +2i(L− L̄) is analytic;
since this last expression is real, it is constant and thus zero, since it tends to zero as
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z →∞. Applying the boundary conditions at Im z = 0, and using the usual notation
for the values on either side of the real axis, it follows that

L+ + L− = u∗h′′,

L+ − L− = 1
2iP, (10.211)

which relate the values either side of Im z = 0. From (10.207), we have ψxy =
i(ψzz − ψz̄z̄) = 1

2i(z − z̄)(B′′′ − B′′′), and thus ψxy|y=0 = 0; it follows that P = −N∗

on y = 0, and the drag (i. e., the sliding law) is then computed (for a 2π-periodic h)
as

στ ∗

ν2
=

1

iπ

∫ 2π

0

(L+ − L−)h′ dx; (10.212)

evaluating the integral, we find

στ ∗

ν2
= 4u∗

∞∑

1

k3|ak|2. (10.213)

For a linear model such as this, τ ∗ and thus τb is necessarily proportional to u∗ and

thus ub. For Glen’s flow law, the slip coefficient multiplying τ ∗ becomes
σ

νn+1
. The

problem can not be solved exactly, but variational principles can be used to estimate
a sliding law of the form

τb ≈ Ru1/n
b . (10.214)

Weertman’s original sliding law drew a balance between (10.214) and the linear de-

pendence due to regelation, and the heuristic ‘Weertman’s law’ τb ∝ u1/m
b , with

m ≈ 1
2(n + 1) is often used.

Simplistic sliding laws such as the above have been superceded by the inclusion
of cavitation. When the film pressure behind a bump decreases to a value lower
than the water pressure in the local subglacial drainage system, a cavity must form,
and indeed, such cavities are plentifully observed. An appropriate generalisation of
(10.211) is then

L+ + L− = u∗h′′ in C ′,

L+ − L− = −1
2iNc in C, (10.215)

where the bed is divided into cavities (C) where P is known (= −Nc), and attached
regions where h is known. One can solve this problem to find the unknown cavity
shapes, and for a bed consisting of isolated bumps, τb(ub) increases monotonically for
small ub, reaches a maximum, and then decreases for large ub, as shown in figure 10.9.
The decreasing portion of the curve is unstable (increasing velocity decreases drag)
and is caused by the roofs of the cavities from one bump reaching the next bump.

From (10.206) it follows that Nc in (10.215) is proportional to the effective pressure
N = pi − pw, specifically

Nc =
σN

ν[τ ]
, (10.216)
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Figure 10.9: Stress versus velocity for a bed of isolated bumps. The inset shows the
typical form of the separated flow on the decreasing portion of the curve, when the
cavities reach the next bump.

and in fact the sliding law has the specific form τb = Nf
(ub

N

)
. For a nonlinear Glen’s

law, the generalisation must take the form

τb = Nf
( ub

Nn

)
. (10.217)

The reason for this is that one can scale the problem in the nonlinear case using
p− pi, τij ∼ N , u ∼ A[x]Nn, x ∼ [x], and the consequent sliding law must be of the
form (10.217) (assuming the regelative component is small). In particular, note that

the fraction s of uncavitated bed must be a decreasing function of Λ =
ub

Nn
.

The multivaluedness of ub(τb) is very suggestive of surging — but is it realistic?
Consideration of more realistic (non-periodic) beds suggests that the multi-valuedness
remains so long as the the peak roughness amplitude is relatively constant. However,
if there are increasing large bumps—pinning points, riegels—one might expect that
f(·) in (10.217) will be an increasing function of its argument, since when smaller
bumps start to be drowned, larger ones will take up the slack. A plausible sliding law
then has f(ξ) increasing as a power of ξ, whence we can obtain (for example)

τb = cur
bN

s, (10.218)

where we would expect r, s > 0. More specifically, (10.217) would suggest s = 1− rn,
and also that r ≈ 1

n would be appropriate at low ub, where cavitation is absent.
When cavitation occurs, one would then expect lower stresses, so that r < 1

n . There
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is in fact some experimental and field evidence consistent with laws of this type, with
r ≈ s ≈ 1

3 , for example. More detailed theoretical studies suggest that f(Λ) will
eventually reach a maximum which is determined by the largest wavelength bumps.

An apparently altogether different situation occurs when ice slides over wet, de-
forming till. If the till is of thickness dT and has (effective) viscosity ηT , then an
appropriate sliding law would be

τb =
ηT ub

dT
. (10.219)

In fact, till is likely to have a nonlinear rheology, and also in accordance with Terza-
ghi’s principle of soil mechanics, one would expect ηT to depend on effective pressure
N . One possible rheology for till14 gives the strain rate as

ε̇ = AT
τa

N b
, (10.220)

in which case the sliding law would be again of the form (10.218), with c = (AT dT )−1/a,
r = 1/a, s = b/a. If the till is taken to be plastic, then we would have r = 0, s = 1,
corresponding to (10.220) when a = b ) 1. Thus there are some good reasons to
choose (10.218) as an all purpose sliding law, and this points up the necessity of a
subglacial hydraulic theory to determine N .

10.3.1 Röthlisberger channels

Subglacial water is generated both by basal melt (of significance in ice sheets) and
from run-off of surface melt or rainfall through crevasses and moulins, which access
the glacier bed. Generally the basal water pressure pw is measured to be below the
overburden ice pressure pi, and the resulting positive effective pressure N = pi − pw

tends to cause any channels in the ice to close up (by creep of the ice). In fact,
water is often seen to emerge from outlet streams which flow through large tunnels in
the ice, and the theory which is thought to explain how such channels remain open
asserts that the channel closure rate is balanced by melt back of the channel walls by
frictional heating due to the water flow.

The classical theory of subglacial drainage is due to Röthlisberger, and is described
below. Much more detail, including the effects of time dependence in the model, is
provided in chapter 11. Here we discuss only the determination of effective pressure
in steady state conditions. We consider a single channel of cross sectional area S,
through which there is a water flux Q. We take Q as being determined by external
factors such as surface meltwater runoff; this is appropriate for glaciers, but not for
ice sheets, where Q must be determined by subglacial melting (we come back to this
later). If the flow is turbulent, then the Manning law for flow in a straight conduit is

ρwg sin α− ∂p

∂s
=

f1Q2

S8/3
, (10.221)

14The choice of a suitable till rheology is problematic, since till is a granular material, and therefore
has plastic behaviour, i. e., a yield stress. It is a matter of current interest whether any kind of viscous
rheology is actually appropriate. Further discussion is given in the notes.
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where ρw is water density, g is gravity, s is distance down channel, α is the local bed
slope, and we write p = pw for water pressure; f1 is a roughness coefficient related
to the Manning friction factor.15 If we suppose that the frictional heat dissipated by
the turbulent flow is all used to melt the walls, then

mL = Q

[
ρwg sin α− ∂p

∂s

]
, (10.222)

where L is the latent heat, and m is the mass of ice melted per unit length per unit
time.

The last equation to relate the four variables S, Q, p and m stems from a kinematic
boundary condition for the ice, and represents a balance between the rate at the which
the ice closes down the channel, and the rate at which melting opens it up:

m

ρi
= KS(pi − p)n; (10.223)

here m/ρi is the rate of enlargement due to melt back, while the term on the right
hand side represents ice closure due to Glen’s flow law for ice; the parameter K is
proportional to the flow law parameter A.

Elimination of m and S yields a second order ordinary differential equation for
the effective pressure N = pi − p, which can be solved numerically. However, it is
also found that typically ∂p/∂s ' ρwg sin α (in fact, we expect ∂p/∂s ∼ ρwgd/l, so
that in the notation of (10.11), the ratio of these terms is of O(ε)); the neglect of the
∂p/∂s term in (10.221) and (10.222) is singular, and causes a boundary layer of size
O(ε) to exist near the terminus in order that p decrease to atmospheric pressure.16

Away from the snout, then

S ≈
[

f1Q2

ρwg sin α

]3/8

, KSNn ≈ Qρwg sin α

ρiL
, (10.224)

thus
N ≈ βQ1/4n, (10.225)

where

β =

[
ρwg sin11/8 α

ρiLKG3/8n′3/4

]1/n

(10.226)

is a material parameter which depends (inversely) on roughness. Taking ρw = 103

kg m−3, ρi = 917 kg m−3, g = 9.81 m s−2, L = 3.3 × 105 J kg−1, K = 0.5 × 10−24

Pa−n s−1, n = 3, sin α = 0.1, G = 6.57 and n′ = 0.04 m−1/3 s, we find β ≈ 24.7 bar

15Retracing our steps to (4.17), we see that f1 = ρwgn′2G, where the geometrical factor G =
(

l2

S

)2/3

= 6.57 for a full semi-circular channel; l is the wetted perimeter.
16At least, this would be the boundary condition if the channel were full all the way to the margin.

In practice, this is not the case. Glacial streams typically emerge from a cavern which is much larger
than the stream, and in this case it is appropriate to specify that the channel pressure is atmospheric
where the ice pressure is positive. In any case, the Röthlisberger theory makes no sense if p = pi,
since then we would have m = 0 and thus Q = 0.
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(m3 s−1)−1/12, so that N ≈ 30 bars when Q = 10 m3 s−1. Since pi = 9 bars for a
100 metre deep glacier, it is clear that the computed N may exceed pi. In this case,
p must be atmospheric and there will be open channel flow. It is likely that seasonal
variations are important in adjusting the hydraulic régime.

Arterial drainage

A feature of the Röthlisberger system is the surprising fact that as the water pressure
is increased (so N decreases), the water flux decreases. This is opposite to our common
expectation. A consequence of this is that the channels, like Greta Garbo, want to be
alone; if one puts two channels of equal size and equal effective pressures side by side,
each carrying a water flux Q, then a perturbation ∆Q > 0 in the flow of one channel
will cause an increase in N , and thus a decrease in water pressure, relative to the
other channel. Because the bed of a glacier will be leaky, this allows the now smaller
channel to drain towards the bigger one, and thus the smaller one will close down.
This process, the formation of larger wavelength pattern from smaller scales, is known
as coarsening, and occurs commonly in systems such as granular flows, river system
development and dendritic crystal growth, and is not fully understood, although the
apparent mechanism may be clear (as here).

A consequence of this coarsening is that we expect a channelised system to form
a branched, arborescent network, much like a subaerial river system. The difference
is that tributaries oblique to the ice flow will tend to be washed away by the ice flow,
so that only channels more or less parallel to the ice flow will be permanent features.
Presumably, tributary flow will thus be facilitated by the presence of bedrock steps
and cavities, which can shield the tributaries from the ice flow.

10.3.2 Linked cavities

The channelised drainage system described above is not the only possibility. Since
water will also collect in cavities, it is possible for drainage to occur entirely by means
of the drainage between cavities. A simple way to characterise such a drainage system
is via a ‘shadowing function’ s which is the fraction of the bed which is cavity-free.
From our discussion following (10.217), s is a monotonically decreasing function of

Λ =
u

Nn
, (10.227)

where u is the sliding velocity. If P is the normal ice stress over the cavity-free part
of the bed, then a force balance over the bed suggests that

pi = sP + (1− s)p, (10.228)

where p is the water pressure in the cavities and pi = N +p is the far-field ice pressure.
We imagine a system of cavities linked by Röthlisberger-type orifices.17 If there are
nK such cavities across the width of a glacier, then the total water flow Q divides into

17The cavities are the veins, and the orifices are the arteries, of the subglacial plumbing system.
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Q

nK
per channel, subjected to a local effective pressure P − p =

N

s
. Röthlisberger

dynamics then dictates that the effective pressure is given by

N

s(Λ)
= δNR, (10.229)

where NR is given by (10.225), Λ by 10.227, and

δ =

(
1

nK

)1/4n

< 1. (10.230)

Linked cavity drainage thus operates at a higher pressure than a channelised drainage
system. This very simple description is at best qualitatively true, but it is very
powerful (and therefore tempting), as we shall see.

Stability

If there are two different styles of drainage, one may ask which will occur in practice?
For the linked cavity system, the answer to this lies in the inverse to our discussion
of arterial drainage above. A linked cavity system is an example of a distributed
drainage system, and if we denote the corresponding effective pressure by NK (sat-
isfying (10.229)), then the system will be stable if N ′

K(Q) < 0. In this case, any
local enlargement of an inter-cavity passage will relax stably back to the distributed
system.

It is convenient to define L(Λ) via

L = ln

(
1

s

)
; (10.231)

L is a monotonically increasing function of Λ, and for illustrative purposes we will
take it, for the moment, as linear (this is inessential to the argument). Calculation
of N ′

K (see question 10.10) shows that

−N ′
K

NK
(nΛL′ − 1) =

N ′
R

NR
, (10.232)

and thus the linked cavity system is stable if

Λ > Λc =
1

nL′ . (10.233)

If Λ < Λc, then local perturbations will cause inter-cavity passages to grow, forming
channels which will eventually coarsen to result in a single central Röthlisberger
artery.

More generally, the effective pressure defined by (10.229) can be written in the
form

n1/4n
K N exp

[
L

( u

Nn

)]
= βQ1/4n, (10.234)
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Figure 10.10: Illustrative form of the drainage effective pressure given by (10.234)
relating effective pressure N to water flow Q through a field of linked cavities. The

specific functions used in the figure are L(Λ) =
1− e−kΛ

k
, Λ =

u

Nn
, with k = 0.2,

u = 1, n = 3. For the curve labelled K (which is the continuation of that labelled
F) nK = 200, while for the lower (R) curve nK = 1. The three components of the
curve represent F: patchy film flow; K: linked cavities; R: Röthlisberger channel. To
the right of the minimum of the curve (here at N ≈ 1.41), Λ < Λc, and the drainage
channels coarsen, leading to the single Röthlisberger channel R. To the left of the
minimum, distributed drainage is stable, and this takes the form of linked cavities K
for N > 0. However, if N → 0, we suppose that some of the bed remains in contact
with ice, thus the shadowing function remains positive, and this allows a film flow F
as the water flux decreases to zero.

which yields a family of curves (depending on the number nK of channels) which
relate N to water flow Q: see figure 10.10. All of these curves have their turning
point at Λ = Λc. To the left of these minima, Λ > Λc and a distributed system is
preferred, with nK increasing (fine-graining) until limited by the cavity spacing. To
the right of the minima, coarsening will occur until a single channel (nK = 1) occurs.

A question arises, what happens at very low water fluxes, when (10.234) suggests
no corresponding value of N if L is linear. In reality, we expect that at very low water
fluxes, water will trickle along the bed in a patchy film, while the ice is in effective
contact with the larger clasts of the bed. If this is the case, then it indicates that
s, and thus also L, should saturate at large Λ. The effect of this is then to cause
Q given by (10.234) to reach a maximum at small N , and then decrease sharply to
zero. This gives us a third branch, which we associate with film flow, when there is
insufficient water flux to develop proper orifice flow between cavities.

In this view of the drainage system, there is really no difference between streams
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and cavities, or between linked cavities and Röthlisberger channels and patchy films;
the only distinction is of one of degree. Intrinsic to our conceptual description is an
assumption of bimodality of bed asperity size. The small scale granularity of the bed
allows a trickling flow at small Q, while the larger bumps allow cavities and inter-
cavity orifices; but while this assumption is a useful imaginative convenience, it is
probably inessential.

10.3.3 Canals

A further possible type of drainage is that of a system of canals. This refers to
situations where ice flows over a layer of subglacial sediments, which will commonly
take the form of till, with its bimodal mixture of fine particles and coarse clasts. If the
basal ice is temperate and there is subglacial water, then it is commonly thought that
the permeability will be sufficiently low that some sort of subglacial stream system
must develop.18 If the till is very stiff, then this can take the form of Röthlisberger
channels. On the other hand, if the till is erodible, then the channels may become
incised downwards into the sediments. It is this situation which we now try and
describe.

Because there are now two different wetted perimeters, both the ice and the till
dynamics must be considered. That for the ice is similar to the Röthlisberger channel,
except that we do not assume that the channel is semi-circular. Rather, we identify a
mean width w and a depth h. The semi-circular case is recovered if h ∼ w. We take
the cross-sectional area to be

S = wh. (10.235)

If we assume a Manning flow law in the canal, then (cf. (4.18))

τ =
ρwgn′2u2

R1/3
, (10.236)

where u is the mean velocity, and

R =
S

l
(10.237)

is the hydraulic radius, with l being the wetted perimeter; we take

l ≈ 2w, (10.238)

which will serve for both wide and semi-circular channels.
The rate of ice melting is

ṁi =
τuw

L
, (10.239)

while a force balance yields
τ l ≈ ρigSSi, (10.240)

18This may not always be necessary; shear and consequent fracture of the till may allow higher
permeability pathways, and consequent drainage to bedrock, if there is a basal aquifer. However,
this scenario seems unlikely for a deep till layer which only deforms in its uppermost part.
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where Si is the ice surface slope (this ignores the relatively small difference between
ice and water densities, and also the gradient of effective pressure). We suppose that
melting balances ice closure, so that

ṁi = ρiKw2Nn, (10.241)

where K is a shape-dependent closure rate coefficient; (10.241) is appropriate for both
semi-circular and wide channels. Finally, the water flux is

Q = Su. (10.242)

Counting equations, we see that only one further equation is necessary to deter-
mine N in terms of Q, and this involves a description of the sediment flow. Eliminating
subsidiary variables, we find

w2 =
24/3ρwn′2Q2

ρiSih10/3
, Kw2Nn =

gSiQ

2L
, (10.243)

which can be compared with (10.224). In particular, if we take w ≈ h, then we regain
the Röthlisberger relation (10.225), with

β =

[
gSi

2KL

(
ρiSi

24/3ρwn′2

)3/8
]1/n

, (10.244)

comparable to (10.226).
Now we consider the appropriate choice of depth for a canal. On the face of it,

there is little difference between the combined processes of thermal erosion (melting)
and ice creep, and sediment erosion and till creep. But there is a difference, and that
lies in the rôle played by gravity. The shape of sub-aerial river channels is mediated
by the fact that non-cohesive sediments cannot maintain a slope larger than the
angle of repose, and when subject to a shear stress, the maximum slope is much
less. Consequently, river beds tend to be relatively flat, and rivers are consequently
wide and shallow. Therefore, if subglacial till is erodible, as we expect, the resulting
channel will tend to have a depth which is not much greater than that which provides
the critical stress for transporting sediment. As an approximation, we might thus
take

τ ≈ τc = µc∆ρswgDs, (10.245)

where µc ≈ 0.05 is the critical Shields stress, and Ds is a representative grain size,
probably of the small size particles. In this case, the depth of the canal is given by

h ≈ hc =
2µc∆ρswDs

ρiSi
. (10.246)

Using values µc = 0.05, ∆ρsw = 1.6×103 kg m−3, ρi = 0.917×103 kg m−3, Ds <∼ 10−3

m, Si = 10−3, we find h <∼ 20 cm.
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If we assume that the channel depth is controlled by sediment erosion as in
(10.246), then the relations in (10.243) give

N =
γ

Q1/n
, (10.247)

where

γ =

[
ρigS2

i h
10/3
c

27/3KLρwn′2

]1/n

. (10.248)

Using similar values as before with hc = 0.2 m, we find γ ≈ 0.32 bar (m3 s−1)1/3.
There are two important consequences of (10.247). The first is that N decreases

with Q, so that, unlike Röthlisberger channels, canals as described here will form a
distributed system, just like the linked cavity system; in effect there is little difference
other than a semantic one between the two systems. The second consequence is that
for any reasonable values of Q, say 0.1–10 m3 s−1, the effective pressure is much less
than that of a channelled system, in a typical range 0.1–0.6 bars, similar to that
found on the Siple Coast ice streams. The inverse dependence of N on Q also has an
important dynamic effect on the ice flow, as we discuss below in section 10.4.3.

An issue of concern in this description is that we have apparently ignored the
details of sediment creep and canal bank erosion, despite the apparent equivalence
with the processes of ice creep and thermal erosion. We will have more to say on
this in section 10.5.2, but for the moment we simply observe that in our theoretical
description, we have arbitrarily assumed that the ice surface is (relatively) flat. The
rough basis for this assumption lies in our expectation that it will be appropriate if
the till is much softer than the ice, but in order to quantify this, it is necessary to
write down a model which allows description of both the upper ice/water interface
and the lower water/sediment interface. The basis for such a model is given in section
10.5.2, when we (briefly) discuss the formation of eskers.

10.3.4 Ice streams

A modification of the discussion of ice shelves occurs when we consider an appropriate
model for ice streams. Ice streams, in particular those on the Siple Coast of Antarc-
tica, are characterised by small surface slopes and high velocities. On ice streams
such as the Whillans ice stream B, the depth di ∼ 103 m and the ice surface slope is
∼ 10−3, so that the basal shear stress is ∼ 0.1 bar. If we suppose that the effective

viscosity ηi =
1

2Aτn−1
≈ 6 bar y, and take the velocity scale as U ∼ 500 m y−1, then

the corresponding shear stress scale ηiU/di ∼ 3 bar: evidently motion is largely by
sliding. We thus introduce a new dimensionless parameter λ, which is the ratio of the
magnitude of the actual basal stress to the shear stress scale:

λ =
τ0di

ηiU
, (10.249)

where τ0 = ρigdiε is the basal stress scale, ε being the aspect ratio. Using the values
quoted above, we may estimate λ ∼ 0.03.
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We follow the exposition in section 10.2.2 (and its three-dimensional modification
in question 10.4), with the distinction that the shear stresses are scaled as τ13, τ23 ∼ τ0,

while the longitudinal stresses are scaled as p− pa− ρig(s− z), τ12, τ11, τ22, τ33 ∼
ηiU

l
;

then the scaled model (10.38) takes the form

ux + vy + wz = 0,

τ13,z = sx +
ε2

λ
[px − τ11,x − τ12,y] ,

τ23,z = sy +
ε2

λ
[py − τ12,x − τ22,y] ,

pz − τ33,z = λ(τ13,x + τ23,y),

uz + ε2wx = λAτn−1τ13,

vz + ε2wy = λAτn−1τ23,

uy + vx = Aτn−1τ12,

2ux = Aτn−1τ11,

2vy = Aτn−1τ22,

2wz = Aτn−1τ33,

τ 2 = τ 2
13 + τ 2

23 +
ε2

λ2

[
1
2τ

2
11 + 1

2τ
2
22 + 1

2τ
2
33 + τ 2

12

]
.

(10.250)

This allows for a temperature-dependent rate factor A, but we will now suppose
A = 1. The boundary conditions are, on z = s:

τ13 =
ε2

λ
[(−p + τ11) sx + τ12sy] ,

τ23 =
ε2

λ
[τ12sx + (−p + τ22) sy] ,

p− τ33 = λ(−τ13sx − τ23sy),

w = st + usx + vsy − a, (10.251)

while at the base z = b(x, y, t):

(u, v) = ub, w = ubx + vby. (10.252)

The dimensionless form of the sliding law (10.218) can be written as

τb = Rur
b, (10.253)

where ub = |ub|, and R is a dimensionless roughness factor which depends on effective
pressure N . By choice of λ, we may suppose R <∼ O(1) in streaming flow, but we can
also describe shear flow with little or no sliding by having R) 1. The corresponding
vector form of (10.253) is

τ b = Rur−1
b ub, (10.254)
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where, correct to terms of O(ε2), τ b = (τ13, τ23).
When λ' 1, it is possible to use a different form of approximation (to the shallow

ice approximation where λ = 1) which includes the longitudinal stress terms. This
is called the membrane stress approximation. To derive it, we reconsider (10.250).
Without approximation, we can integrate the vertical normal stress equation to give

p = − (τ11 + τ22)− λ

[
∂

∂x

∫ s

z

τ13 dz +
∂

∂y

∫ s

z

τ23 dz

]
, (10.255)

and substituting this into the shear stress equations, they take the form, again without
approximation,

τ13,z = sx −
ε2

λ
(2τ11,x + τ12,y + τ22,x)− ε2

(
∂2

∂x2

∫ s

z

τ13 dz +
∂2

∂x∂y

∫ s

z

τ23 dz

)
,

τ23,z = sy −
ε2

λ
(τ11,y + τ12,x + 2τ22,y)− ε2

(
∂2

∂x∂y

∫ s

z

τ13 dz +
∂2

∂y2

∫ s

z

τ23 dz

)
.

(10.256)

The membrane stress approximation is based on the limit ε ' 1, independently
of the size of λ, and consists in essence of the neglect of the integral terms in (10.256),
thus we have

τ13,z = sx −
ε2

λ
[2τ11,x + τ12,y + τ22,x] ,

τ23,z = sy −
ε2

λ
[τ11,y + τ12,x + 2τ22,y] . (10.257)

If, in addition, we suppose that λ' 1, then it follows from (10.250)19 that

∣∣∣∣
∂u

∂z

∣∣∣∣' 1,

and thus u ≈ ub, and is a function of x and y. Thus, so also are the stresses τ11, τ12

and τ22, and so we can integrate (10.257) using (10.251) to obtain

τ13 = −(s− z)sx +
ε2

λ

[
∂

∂x
{(2τ11 + τ22)(s− z)}+

∂

∂y
{τ12(s− z)}

]
,

τ23 = −(s− z)sy +
ε2

λ

[
∂

∂x
{τ12(s− z)}+

∂

∂y
{(τ11 + 2τ22)(s− z)}

]
.

(10.258)

As a matter of fact we can argue that (10.258) is still approximately true even
if λ ∼ O(1), as follows. The corrective stress terms of O(ε2/λ) are small unless
horizontal gradients of u are large, and the only way in which this can occur is
if the sliding velocity changes rapidly in space. It follows that in regions where
the corrective stresses are important, they can be accurately approximated by using
the sliding velocity in computing them. There is no loss of accuracy in doing this
everywhere, since the terms are in any case small when the sliding velocity is not

19We presume that u = (u, v) ∼ O(1).
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changing rapidly. By evaluating (10.258) at the bed, we obtain a closed model for
the sliding velocity, in the form

τ1 = −Hsx +
ε2

λ

[
∂

∂x
{(2τ11 + τ22)H}+

∂

∂y
{τ12H}

]
,

τ2 = −Hsy +
ε2

λ

[
∂

∂x
{τ12H}+

∂

∂y
{(τ11 + 2τ22)H}

]
,

(10.259)

where H = s − b is the depth, and (τ1, τ2) = τ b is the basal shear stress, given by
(10.254). This is the membrane stress approximation, in which the membrane stresses
τ11, τ12 and τ22 are given in terms of the sliding velocity (u, v); in the case that λ' 1,
so that shearing is negligible, H is determined by conservation of mass in the form

∂H

∂t
+

∂(Hu)

∂x
+

∂(Hv)

∂y
= a, (10.260)

where a is the accumulation rate.
On the Siple Coast, fast flow alternates with inter-ice stream regions where ice

flow is small, and sliding is small or negligible. In building a model for the mechanics
of ice streams, it is thus advisable to allow for regions where shear flow is important.
Luckily, it is easy to do this in the present context. In consideration of (10.258), we
can reasonably assume that the ice surface does not change abruptly. In that case,
we can remove the depth terms from inside the derivatives, and we can write (10.258)
in the form

(τ13, τ23) ≈ (s− z)g, (10.261)

where

g = −∇s +
ε2

λ
G, (10.262)

and

G =

(
∂

∂x
{2τ11 + τ22}+

∂τ12

∂y
,
∂τ12

∂x
+

∂

∂y
{τ11 + 2τ22}

)
. (10.263)

In seeking a correction to (10.260) when shearing is important, we can now invert
our earlier argument. The correction will only be important when sliding is small,
and consequently when longitudinal stresses are small. In this case, τ does not vary
rapidly, and we can take

τ = Hg; (10.264)

(10.263) can then be simplified to the form

G ≈ 1

τn−1

(
∇2u + 3∇∆

)
, (10.265)

where ∆ is the dilatation
∆ = ∇.u. (10.266)
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Just as in the shallow ice approximation, we can integrate (10.261) twice to obtain
the generalisation of (10.260) in the form

∂H

∂t
+ ∇.

{
Hu +

λHn+2

n + 2
gn−1g

}
= a. (10.267)

Together with the membrane stress approximation (10.259) and the sliding law
(10.254), which can be combined to give (approximately)

τ = Rur−1u = Hg, (10.268)

(10.267) allows for a unified description of flow in which both ice streams and non-ice
stream flow are accurately described, at least for isothermal ice (i. e., constant A); g
is defined by (10.262), and G by (10.263).20

A simple model of an ice stream

We give here a simple model of an ice stream such as those in the Siple Coast. We
take axes x downstream and y cross-stream, and we suppose the velocity is purely
in the x-direction, is independent of depth z, and varies only with the transverse
coordinate y, thus u = (u(y), 0). We suppose H = 1 and −∇s = (α, 0), where a
reasonable value of α = 0.1. Then the basal stress is τ = (τ1, 0), and we have the
system

τ1 = Rur = α +
ε2

λ

∂τ12

∂y
,

τ 2 = τ 2
1 +

ε2

λ2
τ 2
12,

τ12 =
uy

τn−1
. (10.269)

For the basal sediments on the Siple coast, for example beneath the Whillans
ice stream, a yield stress may be relevant, in which case we might have r = 0 and

R ≈ 0.01. Then we suppose that τ1 '
ε

λ
τ12, so that

τ ≈ ε

λ
τ12. (10.270)

It then follows that

τ ≈
( ε

λ
|uy|

1
n−1 uy

)
, τ12 =

(
λ

ε

)1− 1
n

|uy|
1
n−1 uy, (10.271)

and thus that u satisfies the equation

Rur = α +
ε1+ 1

n

λ
1
n

∂

∂y

(
|uy|

1
n−1 uy

)
. (10.272)

20Note that τ in (10.264) is the second stress invariant, while τ in (10.268) is the basal shear
stress.
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We define y = νY , where

ν =
ε

λ
1

n+1 α
n

n+1

, (10.273)

and suppose that R' α, connoting weak basal till. u then satisfies the equation

0 ≈ 1 +
∂

∂Y

(
|uY |

1
n−1 uY

)
, (10.274)

and suitable boundary conditions are that

u = 0 on Y = ±L, (10.275)

where L can be determined if we specify the normalising condition u(0) = 1. Adopting
this, the solution is

u = 1− |Y |n+1

n + 1
, (10.276)

and the dimensional ice stream width is then

Lis = 2di

(
n + 1

λαn

) 1
n+1

, (10.277)

where di is ice depth. Taking di = 1,000 m, we can find an ice stream width of 40 km
if, for example, we take α = 0.1, λ = 0.025.

Note that in (10.269)1, we have
ε

λ
τ12 ∼

αν

ε
, so that our earlier assumption that

τ1 (∼ R) ' ε

λ
τ12 is valid if R ' αν

ε
, and thus certainly if ν >∼ ε, as is confirmed by

(10.273).

10.4 Waves, surges and mega-surges

10.4.1 Waves on glaciers

Waves on glaciers are most easily understood by considering an isothermal, two-
dimensional model. We suppose the base is flat (h = 0), so that equations (10.25)
and (10.26) give

Ht +

[
{1− µHx}n Hn+2

n + 2
+ ubH

]

x

= B′(x), (10.278)

where B′(x) = a is the accumulation rate, and µ ∼ 0.1. If we firstly put µ = 0 and
also ub = 0, then

Ht + Hn+1Hx = B′(x), (10.279)

which has the steady state
Hn+2

0

n + 2
= B(x). (10.280)

With B′ > 0 in x < xf (say) and B′ < 0 in x > xf (x = xf is then the firn
line), (10.280) defines a concave profile like that in figure 10.6. (10.279) is clearly
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hyperbolic, and admits wave-like disturbances which travel at a speed Hn+1, which is
in fact (n + 1) (≈ 4) times the surface speed. If we take an initial condition at t = 0
corresponding to a balance function B(x) − εD(x), where ε ' 1, then the solution
using the method of characteristics subject to an upstream boundary condition of

H = 0 at x = 0 (10.281)

is
Hn+2

n + 2
= B(x)− εD(σ),

t =

∫ x

σ

dx′

[(n + 2){B(x′)− εD(σ)}](n+1)/(n+2)
. (10.282)

The characteristics of (10.279) propagate downstream and reach the snout (where
H = 0) in finite time. (10.282) is somewhat unwieldy, and it is useful to approximate
the characteristic solution for small ε. However, if we use the blunt approach, where
we write H = H0 + εh, a straightforward linearisation of (10.279) shows that h
grows unboundedly near the snout of the glacier. This unphysical behaviour occurs
because the linearisation artificially holds the snout position fixed; mathematically,
the linearisation is invalid near the snout where H0 = 0 and the assumption εh' H0

breaks down. An apparently uniformly valid approximation can be obtained, however,
by linearising the characteristics:

Ht + Hn+1
0 Hx ≈ B′(x). (10.283)

For H ≈ H0, the general solution is

H = H0(x) + φ(ξ − t), (10.284)

where

ξ =

∫ x

0

dx

Hn+1
0 (x)

(10.285)

is a characteristic spatial coordinate (note ξ is finite at the snout). (10.284) clearly
reveals the travelling wave characteristic of the solution.

Margin response

However, although (10.284) is better than the blunt approach, it is not really good
enough, as it still only defines the solution within the confines of the steady state
solution domain determined by (10.285). The more methodical way to deal with the
singularity of the solution at the snout is to allow margin movement by using the
method of strained coordinates. That is to say, we change coordinates to

x = s + εx1(s, τ) + . . . , t = τ. (10.286)

The equation (10.279) now takes the form

Hτ + Hn+1Hs = B′ + ε(x1τ + Hn+1x1s)Hs + . . . , (10.287)
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and analogously to (10.282), we pose the initial condition

Hn+2

n + 2
= B(s)− εD(s) at τ = 0. (10.288)

In addition, we pose the boundary condition

H = 0 at s = 0, (10.289)

which also forces
x1 = 0 at s = 0. (10.290)

We also require that x1 is such that

H = 0 at s = 1, (10.291)

this being the position of the snout when D = 0, i. e., B(1) = 0.
We put

H = H0 + εh + . . . , (10.292)

and hence find that
Hn+2

0

n + 2
= B(s), (10.293)

and, using ξ defined by (10.285) (but with s as the upper limit) as the space variable,
we have (

Hn+1
0 h

)
τ

+
(
Hn+1

0 h
)

ξ
= (x1τ + x1ξ) H ′

0(ξ), (10.294)

and the initial condition is

Hn+1
0 h = −D at τ = 0. (10.295)

The boundary condition of h = 0 at s = 0 is irrelevant here, because there is only a
perturbation in the initial condition, so that for τ > ξ, h = 0 and the steady solution
is restored.

The solution of (10.294) can be written as

Hn+1
0 h = −D(ξ − τ) + U(ξ, τ),

x1 =

∫ τ

0

P (η + ξ − τ, η) dη + x0
1(ξ − τ), (10.296)

where U satisfies

Uτ + Uξ = P (ξ, τ)H ′
0(ξ),

U = 0 at τ = 0. (10.297)

The method of strained coordinates proceeds by choosing x1 in order that h is no
more singular than H0. Since H0 ∼ ξ1 − ξ as ξ → ξ1, where

ξ1 =

∫ 1

0

ds

Hn+1
0 (s)

, (10.298)
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we have to choose U so that the right hand side of (10.296)1 is O[(ξ1 − ξ)n+2] as
ξ → ξ1. For n = 3, for example, this requires choosing the n + 2 = 5 conditions

U = D(ξ1 − τ), Uξ = D′(ξ1 − τ), . . . , Uξξξξ = Div(ξ1 − τ) at ξ = ξ1. (10.299)

As is well known, any such function will do, its importance being locally near
ξ = ξ1. Given U , (10.297)1 defines P , and then (10.296)2 defines the straining, and
thus the margin position. To find U , it is convenient to solve the partial differential
equation (assuming n + 2 = 5)

Uτ = U10ξ, (10.300)

subject to the five boundary conditions in (10.299), together with, for example,

U = Uξ = . . . = U4ξ = 0 at ξ = ξf , (10.301)

where ξf denotes the firn line position where H ′
0(ξf ) = 0. The point of choosing a

tenth order equation is to ensure decay away from ξ = ξ1, which is cosmetically ad-
vantageous; the point of choosing ξf in (10.301) is to ensure that P remains bounded;
again, this is largely cosmetic and one might simply replace ξf by ∞.

The upstream boundary condition

We have blithely asserted that

H = 0 at x = 0, (10.302)

as seems fine for the diffusionless equation (10.279). Let us examine this more closely,
assuming the diffusional model (10.278) with no sliding, in steady state form:

(1− µHx)nHn+2

n + 2
= B(x), (10.303)

where we have already integrated once, applying the condition that the ice flux is zero

at the glacier head x = 0, where B =

∫ x

0

a(x′) dx′ = 0. If we ignore µ, this seems

fine, but if µ .= 0, then we can rewrite (10.303) as

µHx = 1−
{

(n + 2)B

Hn+2

}1/n

. (10.304)

Consideration of the direction of trajectories in the (x, H) plane shows that there is
no trajectory which has H(0) = 0. The only alternative allowing zero flux at the head
is µHx = 1 there (physically, a horizontal surface), but then the depth is necessarily
non-zero.

We have seen this problem before (see question 4.10). Consideration of (10.304)

shows that there is a unique value of H0 > 0 such that if H(0) = H0, then
Hn+2

n + 2
∼

B(x) for x) µ, as is appropriate. Based on our earlier experience, we might expect
that a boundary layer in which longitudinal stresses are important would provide a
mechanism for the transition from H = 0 to H = H0. This is indeed the case (see
question 10.11), but the resultant compressive boundary layer appears to be very
unphysical. The theoretical description of the head of a glacier therefore remains
problematical.
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Shock formation

An issue which complicates the small perturbation theory above is the possible for-

mation of shocks. Characteristics x(σ, t) in (10.282) intersect if
∂x

∂σ
= 0. Computing

this we find

∂x

∂σ
=

Hn+1(x, σ)

Hn+1(σ, σ)
− ε(n + 1)D′(σ)Hn+1(x, σ)

∫ x

σ

dx′

H2n+3(x′, σ)
. (10.305)

From this unwieldy expression, it is clear that for small ε, shocks will always form near
the snout if D′ > 0 somewhere, which is the condition for local advance of the glacier.
More generally, glacier advances are associated with steep fronts, while retreats have
shallower fronts, as is commonly observed.

Shocks can form away from the snout if H is increased locally (e. g., due to the
surge of a tributary glacier). The rôle of the term in µ is then to diffuse such shocks.
A shock at x = xs will propagate at a rate

ẋs =
[Hn+2]+−

(n + 2)[H]+−
, (10.306)

where [ ]+− denotes the jump across xs. When the shock reaches the snout, it then
propagates at a speed Hn+1

− /(n + 2), which is slower than the surface speed.
In the neighbourhood of a shock (with ub = 0), we put

x = xs + νX, (10.307)

so that

∂H

∂t
− ẋs

ν

∂H

∂X
+

1

ν

[{
1− µ

ν
HX

}n Hn+2

n + 2

]

X

= B′(xs + νX); (10.308)

if ν is small, the profile rapidly relaxes to the steady travelling wave described by

ẋ0HX =

[
{1−HX}n Hn+2

n + 2

]

X

, (10.309)

providing we choose ν = µ, which thus gives the width of the shock structure. (10.309)
can be solved by quadrature (see question 10.15). In practice the shock width is
relatively long, so steep surface wave shocks due to this mechanism are unlikely (but
they can form for other reasons, for example in surges, when longitudinal stresses
become important).

Seasonal waves

Although they constitute the more dramatic phenomenon, the seasonal wave has
attracted much less attention than the surface wave, perhaps because there are less
obvious comparable analogies. The surface wave is essentially the same as the surface
wave in a river, while the seasonal wave bears more resemblance to a compression
wave in a metal spring, even though the ice is essentially incompressible.
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Apparently the waves are induced through seasonal variations in velocity, which
are themselves associated with variations in meltwater supply to the glacier bed,
so that a natural model for the ice flow would involve only sliding, thus (non-
dimensionally)

Ht + (Hu)x = a, (10.310)

where u is the sliding velocity. If the natural time scale for glacier flow is ti ∼ 100 y,
while the seasonal time scale is ts = 1 y, then it is appropriate to rescale the time as

t = εT, ε =
ts
ti
' 1, (10.311)

so that H satisfies
HT = ε [a− (Hu)x] ; (10.312)

this immediately explains why there is no significant surface perturbation during
passage of the seasonal wave.

To study the velocity perturbation, we suppose that the sliding velocity depends
on the basal shear stress τ (which varies little by the above discussion) and effective
pressure N . If, for example, basal drainage is determined by a relation such as
(10.225), then essentially u = u(Q), so that waves in u are effectively waves in Q,
i. e., waves in the basal hydraulic system.

Suppose that mass conservation in the hydraulic system is written non-dimensionally
as

φST + Qx = M, (10.313)

where M is the basal meltwater supply rate,

φ =
th
ts

(10.314)

is the ratio of the hydraulic time scale th to the seasonal time scale ts, and a force
balance relation such as (10.221) (cf. (10.224)) suggests S = S(Q). If, for simplicity,
we take φS ′(Q) = κ as constant, then the solution of (10.313) subject to a boundary
condition of

Q = 0 at x = 0 (10.315)

is

Q =
1

κ
[J(T )− J(T − κx)], (10.316)

where

J(T ) =

∫ T

0

M(T ′) dT ′. (10.317)

(10.316) clearly indicates the travelling wave nature of the solution.
The diagram in figure 10.2, sometimes called a Hodge diagram, depicts a seasonal

wave through the propagation of the constant velocity contours down glacier. The
constant velocity contours are represented as functions x(Q, t) (if we suppose u de-
pends on Q). Higher Q causes higher N in Röthlisberger channels, and thus lower
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velocity, as seen in figure 10.2. A crude representation of the data is thus as a family
of curves

x = A(Q) + X[T − θ(Q)], (10.318)

where A increases with Q and θ also increases with Q.
To illustrate how (10.316) mimics this, we first note that for non-negative melt-

water supply rates M , J is monotonically increasing and thus invertible, whence we
can write (10.316) in the form

x =
1

κ

[
T − J−1{J(T )− κQ}

]
. (10.319)

Suppose, for example that M = 1 + m(T ) where m is small and has zero mean, so
that

J(T ) = T + j(T ), j(T ) =

∫ T

0

m(T ′) dT ′; (10.320)

it follows that
J−1(u) ≈ u− j(u), (10.321)

and thus

x ≈ Q− 1

κ
[j(T )− j(T − κQ)] . (10.322)

This is sufficiently similar to the putative (10.318) to suggest that this mechanism may
provide an explanation for seasonal waves. According to (10.322), the dimensionless

wave speed is v∗s ∼
1

κ
, and thus the dimensional wave speed vs ∼

l

th
. In figure 10.3,

we see typical ice velocities of 100 m y−1 compared with a seasonal wave speed of
some 15 km y−1. Assuming a time scale of 60 y for a six kilometre long glacier, this
would suggest a hydraulic time scale of about five months. On the face of it, this
seems very long, but in fact the relevant hydraulic time scale should be that over
which the water pressure in the cavity system can respond to changes in the channel
pressure, which will be a lot longer than the adjustment time for the channel itself.

10.4.2 Surges

It has long been suggested that the fast velocities during surges could only be caused
by rapid sliding. Therefore it is sufficient for our purpose to analyse the mass conser-
vation equation in the form

Ht + (Hu)x = B′(x), (10.323)

where u is the sliding velocity. Also, it has been thought that if the sliding velocity
were a multi-valued function of basal stress τb (i. e., τb(u) has a decreasing portion)
then, since τb = H(1 − µsx) ≈ H, this would cause the ice flux Q = uH to be
multi-valued, as shown in figure 10.11. In this case we might expect relaxation oscil-
lations to occur for values of B intermediate between the two noses of Q(H). Two
fundamental questions arise. Firstly, is there any genuine reason why τb(u) should
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Figure 10.11: A multi-valued flux-depth relation can cause oscillatory surges.

be non-monotone, and secondly, how would such a relaxation oscillator work in the
spatially dependent case? In particular, it would seem necessary to have a secondary
variable, whose rapid change can facilitate the relaxation between the different solu-
tion branches (cf. figure 1.6 and equations (1.25)).

The discussion in section 10.2 suggested the possibility of non-monotone τb(u) for
flow over a periodic bed. However, it is arguable whether real beds have this feature21,
in which case we may suppose that τ increases with both u and N . What observations
of the 1982–3 surge of Variegated Glacier showed, however, was that there is a switch
in drainage pattern during its surge. There are (at least) two possible modes of
drainage below a glacier. Röthlisberger channels, as described in section 10.2, can
form a branched arterial drainage system. In this case the value of the effective
pressure at the bed N is determined by the water flow, N = NR, say. Alternatively,
there may be no channel system, and the water at the bed fills the cavities behind
bed protuberances, and drains by a slower leakage between cavities. This is the linked
cavity régime described in section 10.3.2; it operates at a higher water pressure and
thus lower effective pressure, Nc, than in the channel drainage. The crucial factor
which enables surges to take place is the switching mechanism, and this depends on
the ice flow over the cavities.

We now combine the form of the sliding law τb = Nf(u/Nn), as discussed in
section 10.2, with a drainage system consisting either of Röthlisberger channels or
linked cavities, the choice of which depends on the value of Λ = u/Nn, with the

21An exception may be the very steep ‘hanging glaciers’, where the periodic behaviour consists of
complete detachment of the glacier snout following tensile fracture.
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Figure 10.12: N is a multi-valued function of u.

transition between drainage systems occurring at the critical value Λc. That is,

N = NR, u/Nn < Λc;

N = Nc, u/Nn > Λc. (10.324)

If this is written as a function N(u), it is multi-valued, as shown in figure 10.12. As a
consequence of this, the sliding law is indeed multi-valued, and hence Q(H) has the
form shown in figure 10.13.

There are two critical values of Q in figure 10.13, denoted Q+, Q−: these are the
values at the noses of the curve (where also H = H+, H−). If B(x) < Q+, then an
equilibrium glacier profile exists in which Q = B(x). However, if the maximum value
of B, Bmax, is greater than Q+, then such a stable equilibrium cannot occur, and the
glacier surges.

The sequence of events in a surge is then as follows. The glacier grows from a
quiescent state in which Q < Q+ on the lower (slow) branch everywhere. When the
maximum depth reaches H+, there is a reservoir zone where H > H−. The ice flux at
H+ jumps to the upper (fast) branch by switching drainage pattern, and this switch
propagates upstream and downstream to where H = H−. These activation waves
propagate at rates of hundreds of metres per hour (and in effect have been observed).
Once the activation waves have propagated to the boundaries of the reservoir zone,
the ice flow is described by the fast mode on the upper branch, and the activated
reservoir zone propagates rapidly downstream, possibly overriding the stagnant snout
and propagating forwards as a front. In terms of figure 10.13, the surge terminates
when H reaches H− everywhere, and deactivation waves propagate inwards from
the boundaries of the exhausted reservoir zone to re-establish the channel drainage
system. There then follows another quiescent phase where the maximum value of H
increases from H− to H+ before the next surge is initiated.
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10.4.3 Sliding and ice streams

It is not known for certain why the ice flow on the Siple Coast of Antarctica, which
flows out to the floating Ross ice shelf, segregates itself into the five distinct ice
streams A to E. The picture which one has of this region is of a gently sloping (slope
α ∼ 10−3) kilometer thick ice sheet which flows in the ice streams at typical rates
of 500 m y−1. Such rapid velocity can only be due to basal sliding, and the seismic
evidence indicates that the ice is underlain by several metres of wet till. One might
expect that a sliding law of the form advocated previously is appropriate, that is

τb = cur
bN

s, (10.325)

with r and s positive. The issue then arises as to how to prescribe N . Recall from
section 10.2 that for drainage through Röthlisberger channels, an appropriate law is
N = βQ1/4n

w , where Qw is water flux. When ice flows over till, an alternative system
of drainage is that of distributed ‘canals’ incised in the subglacial till. For such a
system, an appropriate law is N = γQ−1/n

w , and the low values of effective pressure
in this relation are more representative of measured basal pressures on Whillans ice
stream, for example.

In this case an interesting feedback exists. In Antarctic ice streams, there is little,
if any, surface melt reaching the bed, and the basal water flow is due to melting there.
The quantity of meltwater produced per unit area per unit time is given by the melt
velocity

vm =
G + τbub − g

ρwL
, (10.326)
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where ρw is water density, L is latent heat, G is geothermal heat flux, and g is the
basal heat flux into the ice. This assumes the base is at the melting point. Thus we
expect the basal water flux Qw ∝ G + τbub − g, and so Qw increases with ub (the
dependence of g on ub is likely to be weaker — boundary layer theory would suggest
g ∼ u1/2

b ). If also N decreases with Qw, then N decreases as ub increases. But this
causes further increase of ub via the sliding law. This positive feedback can lead to a
runaway phenomenon which we may call hydraulic runaway.

To get a crude idea of how this works, we denote the ice thickness as h and the
surface slope as Si. If the velocity is u, then the ice flux per unit width is

Q = hu; (10.327)

the basal shear stress is
τ = Rh = curN s, (10.328)

where we define
R = ρigSi; (10.329)

we suppose
N = γQ−p

w , (10.330)

and that
Qw = b[G + τu− g], (10.331)

where, from (10.326), we define

b =
lils
ρwL

, (10.332)

in which li is the ice flow line length scale and ls is the stream spacing, and the heat
flux to the ice is given by

g = au1/2, (10.333)

corresponding to a heat flux through a thermal boundary layer. Consequently

h =
fur

[G + Rhu− au1/2]m
, (10.334)

where

m = ps, f =
cγs

Rbm
. (10.335)

It is not difficult to see from (10.334) if f is low enough (equivalently, the friction
coefficient c is low enough), that u and hence the ice flux Q will be a multivalued
function of h, as shown in figure 10.14. In fact, application of realistic parameter
values suggests that such multi-valued flux laws are normal. More specifically, we
choose estimates for the parameters as follows. We use exponents p = r = s = 1

3 and
thus m = 1

9 , and then c = 0.017 bar2/3 m−1/3 y1/3, based on a sliding law (10.328)
with τ = 0.1 bar, N = 0.4 bar and u = 500 m y−1. Other parameter values are
γ = 0.3 bar (m3 s−1)1/3, Si = 10−3, ρi = 0.917× 103 kg m−3, g = 9.8 m s−2, G = 0.06
W m−2, ρw = 103 kg m−3, L = 3.3× 105 J kg−1, and in addition we choose li = 103

km, ls = 330 m; from these we find R = 3 × 10−7 W m−4 y, b = 1 J−1 m5, and
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Figure 10.14: Thermal feedback causes a multi-valued ice flux. The solution of
(10.334) is plotted using a value of the critical parameter f = 70 W1/9 m4/9 y1/3.
Other values are as described in the text. I am indebted to Ian Hewitt for his pro-
duction of this figure.

thus f = 126 W1/9 m4/9 y1/3. Finally, we choose the value of a based on an assumed

magnitude of g ≈ 4k∆T

di
, where ice depth is di = 103 m, thermal conductivity is

k = 2.2 W m−1 K−1, and surface temperature below freezing is ∆T = 20◦ K; with
u = 500 m y−1, this gives a = 0.8 × 10−2 W m−5/2 y1/2. Figure 10.14 plots velocity
versus depth with these parameter values, except that we take f = 70 W1/9 m4/9 y1/3,
and question 10.14 provides approximate analytic solutions for the different branches.

If, indeed, hydraulic feedback can cause a multi-valued relationship between ice
velocity and depth, what then happens in a region such as the Siple Coast of West
Antarctica? We suppose that the ice flux is determined by conditions upstream, so
that if the ice flux per unit width is q, and the width of the discharge region is W ,
then

Wq = B, (10.336)

where B is the volume flux of ice discharged. If the flow law is multi-valued, then
there exists a range (q−, q+) of q such that the ice flow is unstable (see question
10.14). If B/W < q−, then a uniform slow moving ice flow is possible. Similarly, if
B/W > q+, a uniform fast moving ice stream is possible. What if q− < B/W < q+?
A uniform ice flow is now unstable, and we may expect a spatial instability to occur,
whereby ice streams spontaneously form, as is in fact observed. Such an instability
would be mediated by transitions in water pressure, since basal water will flow from
fast streams at high water pressure to slower ice at low water pressure. This generates
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a lateral enthalpy flux, and in a steady state this can be balanced by a heat flux in
the ice in the opposite direction, since cooling (g) is less effective at lower u, therefore
the slow ice is warmer near the base than the ice streams.

10.4.4 Heinrich events and the Hudson strait mega-surge

What if the drainage channel of an ice sheet over deforming till is relatively narrow?
By analogy with the pattern formation mechanism in reaction-diffusion equations,
one would expect that a multivalued flux-depth relation would not allow separate
streams to form if the channel width is too small, and in this case we would expect
periodic surges to occur down the channel, if the prescribed mass flux corresponds to
a velocity on the unstable position of figure 10.14.

A situation of this type appears to have occurred during the last ice age. The Lau-
rentide ice sheet which existed in North America drained the ice dome which lay over
Hudson Bay out through the Hudson Strait, a 200 km wide trough which discharged
the ice (as icebergs) into the Labrador sea and thence to the North Atlantic.

Hudson Bay is underlain by soft carbonate rocks, mudstones, which can be mo-
bilised when wet. It has been suggested that the presence of these deformable sed-
iments, together with the confined drainage channel, led to the occurrence of semi-
periodic surges of the Hudson Strait ice stream. The evolution of events is then as
follows. When ice is thin over Hudson Bay, the mudstones may be frozen at the base,
there is little, if any, sliding and very little ice flow. Consequently, the ice thickens
and eventually the basal ice warms. The basal muds thaw, and sliding is initiated.
If the friction is sufficiently low (i. e., c and thus f is small), then the multi-valued
sliding law of figure 10.14 is appropriate, and if the accumulation rate is large enough,
cyclic surging will occur. During a surge, the flow velocity increases dramatically, and
there results a massive iceberg flux into the North Atlantic. On the lower branch of
figure 10.14, water production is virtually absent, Qw is low in (10.331) since the flow
is slow and the geothermal and viscous heat at the base can be conducted away by
the ice. The low value of Qw gives high N , consistent with low u. On the upper
branch, however, viscous heat dominates, and Qw is large, N is small, also consistent
with a high u.

At the end of a surge, the rapid ice drawdown causes the water production to
drop, and the rapid velocities switch off. This may be associated with re-freezing of
the basal mudstones.

When water saturated soils freeze, frost heave occurs by sucking up water to the
freezing front via capillary action, and this excess water freezes (at least for fine
grained clays and silts) in a sequence of discrete ice lenses. Heaving can occur at a
typical rate of perhaps a metre per year, though less for fine grained soils, and the
rate of heave is suppressed by large surface loads. Calculations suggest a surge period
of perhaps a hundred years, with a drawdown of a thousand metres, and a recovery
period on the order of 5,000–10,000 years. During the surge, the rapidly deforming
basal muds will dilate (in the deforming horizon, likely to be only a metre or so thick).
At the termination of a surge, this layer re-consolidates, and we can expect the total
heave to be a certain (small) fraction of the frost penetration depth. In effect, the
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ice lenses freeze the muds into the ice stream, so that when the next surge phase is
initiated, some of this frozen-in basal sediment will be transported downstream, and
thence rafted out into the North Atlantic in iceberg discharge.

As discussed in chapter 2, there is evidence that this rather glamorous sequence
of events actually occurs. Heinrich events are layers of ice-rafted debris in deep-
sea sediment cores from the North Atlantic which indicate (or are consistent with)
massive iceberg discharges every 7000 years or so. In addition, oxygen isotope con-
centrations in ice cores from Greenland indicate that severe cooling cycles occurred
during the last ice age. These cooling events may be caused by a switch-off of North
Atlantic deep water (NADW) circulation — effectively switching off the convective
heat transport from equatorial latitudes and thus cooling the atmosphere. It seems
that sequences of these cooling cycles are terminated by Heinrich events, in the sense
that following Heinrich events the climate warms dramatically, perhaps after some
delay. There are two reasons why this should be so. On the one hand, the sudden
reduction in ice thickness should warm the air above, and also it can be expected that
a massive iceberg (and thus freshwater) flux to the North Atlantic acts as a source of
thermal buoyancy, which first slows down and subsequently restarts a vigorous North
Atlantic circulation. Rather than being lumbering beasts, glaciers and ice sheets show
every sign of being dynamically active agents in shaping the climate and the earth’s
topography.

10.5 Drumlins and eskers

There are a number of bedforms associated with the motion of ice sheets, and in
this section we will discuss two of them, drumlins and eskers. Drumlins are small
hills22, generally of oval shape, which corrugate the landscape, as shown in figures
10.15 and 10.16. They are formed ubiquitously under ice sheets, and take a range
of shapes, depending presumably on the basal ice conditions. Ribbed moraines, also
called Rogen moraines after the area in Sweden (Lake Rogen) where such features
were first described, are transverse furrows like a washboard, with the undulations
(presumed) perpendicular to the former ice flow. They are analogous to the transverse
dunes described in chapter 5, and as we shall see, are supposed to be formed by an
analogous instability mechanism.

The three-dimensional drumlins of figure 10.15 may then arise through a secondary
transverse instability, perhaps as some parameter associated with ice flow changes.
What certainly happens under former fast moving ice streams is that drumlins become
elongated in the direction of ice flow, appearing eventually to become extremely
long grooves aligned with the flow. These grooves, which can run for hundreds of
kilometres, are called mega-scale glacial lineations (MSGL), and give the landscape
the appearance of having been combed. Figure 10.17 shows a systems of MSGL in
Northern Canada.

22The word ‘drumlin’ is of Irish origin, generally thought to be a diminutive of the word druim,
meaning a hill, and thus a drumlin is a ‘small hill’.
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Figure 10.15: Drumlins in Northern Ireland. Satellite view.

Figure 10.16: Drumlins in the Ards Peninsula of Northern Ireland.
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Figure 10.17: Satellite view of MSGL in Northern Canada. The lineations are about
a hundred metres in width, and of the order of a hundred kilometres in length.

Eskers23 are sinuous ridges of gravel and sand, of similar dimensions to drumlins,
having elevations of tens of metres. They are associated with former drainage channels
under the ice, most probably Röthlisberger channels, which have become infilled
with subglacial sediment. Figure 10.18 shows a satellite view of an esker system
in Northern Canada. The eskers are the red lineations, and their disordered and
nonlinear arrangement suggests that they may have been formed at different times,
as the ice flow changes direction.

10.5.1 Drumlins

We build a theory of drumlin formation by analogy with the theory of dune formation.
An ice sheet flows as indicated in figure 10.19 over a deformable substrate at z = s,
where s is the elevation of the bedrock. The ice at the base is at the melting point,
and there is a local drainage system for the resulting meltwater. How we treat this
drainage system is key. To begin with, we suppose that the drainage system organises
itself as described earlier, independently of the evolution of the bed elevation.

The surface elevation of the ice sheet is z = zi, relative to a level z = 0 located
at the elevation of the local drainage system. We suppose the bed consists of a
saturated till of porosity φ. If the pore water pressure at the interface z = s is ps

w and
the overburden normal stress there is P s, then the corresponding pore and overburden
pressures below the surface are taken to be

pw = ps
w + ρwg(s− z), P = P s + [ρwφ + ρs(1− φ)]g(s− z), (10.337)

simply through hydrostatic and lithostatic balance: ρw and ρs are the densities of
water and sediment, respectively. Within the till, the effective pressure is defined as

pe = P − pw, (10.338)

23The term esker is also Irish, from eiscir, meaning a small ridge.
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Figure 10.18: A system of eskers in Northern Canada. This false colur satellite image
shows the eskers as the criss-crossed red linear features.

and thus
pe = N + (1− φ)∆ρswg(s− z), (10.339)

where
∆ρsw = ρs − ρw, (10.340)

and N is the effective pressure at the interface,

N = P s − ps
w. (10.341)

The interfacial normal stress P s is related to the stress in the ice by

P s = −σnn = ps
i − τnn, (10.342)

where σnn is the normal stress in the ice, τnn is the deviatoric normal stress in the
ice, and ps

i is the ice pressure at the bed. As is customary in ice sheet dynamics, we
define the reduced pressure Π in the ice by

pi = pa + ρig(zi − z) + Π, (10.343)

where pa is atmospheric pressure, and we define the effective pressure in the drainage
system as

Nc = pa + ρigzi − pc, (10.344)

where pc is the water pressure in the local drainage system, which we presume known.
From these it follows that the effective pressure at the bed is given by

N = Nc + ∆ρwigs + Π− τnn, (10.345)

where
∆ρwi = ρw − ρi. (10.346)

The drainage effective pressure Nc is presumed to be determined by the properties of
the local hydraulic drainage system, as discussed in section 10.3.
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Bed evolution

We restrict our initial presentation of the model to two dimensions (x, z), for the
sake of clarity. The generalisation to three dimensions is given subsequently (see also
question 10.16). The evolution of the bed is given by the Exner equation

st + qx = 0, (10.347)

where q is the basal sediment flux. Ideally, q would be determined in the field or lab-
oratory, but this is not very practicable. Alternatively, we might propose a sediment
transport law based on a presumed rheology of the till. This also is problematic, since
the determination of the rheology of granular materials is difficult and controversial.
For the present purpose, we can largely avoid the issue, recognising only that there
is sediment transport (q .= 0), and that it is likely to depend on both the basal shear
stress τ and the basal effective pressure N , thus

q = q(τ, N). (10.348)

Ice flow

For simplicity we suppose the flow of ice is Newtonian, with a constant viscosity η.
In two dimensions, the equations for the velocity (u, w) can be written in the form

ux + wz = 0,

0 = −Πx − ρigz′i + η∇2u,

0 = −Πz + η∇2w, (10.349)

where Π is the reduced pressure defined earlier, and z′i =
∂zi

∂x
.

691



Surface boundary conditions

The conditions which we apply at the surface are those of stress continuity and a
kinematic condition, which take the form

Π− τnn = 0, τnt = 0, w =
∂zi

∂t
+ u

∂zi

∂x
− a at z = zi, (10.350)

where τnt is the shear stress, a is the accumulation rate. We can anticipate that the
horizontal length scale of interest will be that of drumlins, thus in the range 100–1000
m, and much less than the horizontal length scale appropriate to ice sheets. Therefore
it seems reasonable to suppose that zi will be almost constant, and the boundary
conditions (10.350) can be approximately applied at a flat interface. Although the
regional slope of the ice surface is negligible geometrically, it is necessary to retain it
in the force balance equation (10.349).24

There is an alternative possibility for the upper boundary condition, which arises
in the case that the parameter

σ =
l

di
(10.351)

is small, where l is the horizontal drumlin length scale and di is the ice depth scale. In
this case, the flow near the base is akin to a boundary layer flow, and the appropriate
condition is a matching condition to the outer ice sheet flow, which sees the base as
essentially flat with small scale wrinkles. Assuming this outer ice sheet flow is a shear
flow which varies on a horizontal length scale ) di, appropriate matching conditions
are

Π→ 0, ηuz → τb, w → 0 as z →∞. (10.352)

The quantity τb is the basal shear stress determined by the outer flow, and is given
by

τb = −ρigziz
′
i. (10.353)

It is not clear which of the limits for σ is the more appropriate. Four hundred
metre drumlins under eight hundred metres of ice suggest σ = O(1), but two hundred
metre drumlins under two thousand metres of ice suggest σ ' 1. Nor is it clear
whether there might be any essential difference in the resulting stability analysis.
Since the limit σ ' 1 is the simpler, we focus henceforth on that case.

Basal boundary conditions

To write the basal boundary conditions, we need to construct the normal and shear
stress, and the tangential velocity, using the unit normal and tangent vectors. (In
three dimensions, there are two tangent vectors to be used, see question 10.16.)

24This is analogous to the Boussinesq approximation in convection: the surface slope is important
in determining the driving stress, but negligible otherwise.
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In two dimensions, the normal and shear deviatoric stresses are

−τnn =
2η

1 + s2
x

[
(1− s2

x)ux + sx(uz + wx)
]
,

τ =
η

1 + s2
x

[
(1− s2

x)(uz + wx)− 4sxux

]
. (10.354)

We suppose that there is a sliding velocity, which we denote by U , and as for
sediment transport, we suppose that this depends on the interfacial shear stress25 τ
and interfacial effective pressure N . Accounting for the tangential velocity at the
bed, the sliding law then takes the form

u + wsx

(1 + s2
x)

1/2
= U(τ, N). (10.355)

As for the sediment transport, we avoid specification of how sliding is achieved; it
might be by deformation of the underlying till, or by slip at the ice-till interface. In
either case we expect dependence of U on τ and N .

The final condition at the bed is the kinematic condition,

w = st + usx; (10.356)

we ignore interfacial melting, usually of the order of millimetres per year, and negli-
gible in this context.

Between them, the equations (10.345), (10.348), (10.354), (10.355) and (10.356)
need to provide a total of two interfacial boundary conditions for the ice flow; the
Exner equation (10.347) provides the evolution equation for s. We can take the two
interfacial conditions to be the velocity conditions (10.355) and (10.356), which are
given in terms of τ , N and s. Then (10.345) and (10.354)1 determine N , (10.347) and
(10.348) determine s, and (10.354)2 determines τ . The model is therefore complete.

A reduced model

We begin by non-dimensionalising the model. There are a number of length scales
present in the equations. We define the quantities

zi ∼ di, dD =
Nc

∆ρiwg
, dT =

Nc

∆ρswg(1− φ)
. (10.357)

These length scales are the ice depth scale dI , the drumlin depth scale dD, and the
till deformation depth scale dT . To explain the significance of these scales, we resume
our earlier discussion of till deformation.

25Some confusion is liable to occur between the values of shear stress and other quantities at the
ice-till interface, and the values of these quantities far from the interface, because it is normal to
refer to the far field values as ‘basal’, since on the ice sheet scale, they are at the base of the large
scale ice flow. We will endeavour to avoid this confusion by referring to ‘far field’ and ‘interfacial’
values (despite having defined the basal shear stress in (10.353)!).
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Subglacial till is a granular material, consisting of rough angular fragments in a
matrix of finer grained material, the whole being water saturated when it is being
deformed. In common with all granular materials, we expect that when subjected
to a shear stress, it will not deform until the shear stress exceeds a critical value,
called the yield stress. The reason for this is simple, insofar as we expect two solid
surfaces not to permit sliding until the static coefficient of friction is exceeded. More
specifically, if the normal stress between two clasts is pe, and the shear stress is τ ,
then slip will occur if

τ > µpe, (10.358)

where µ is the coefficient of friction. More generally, the Mohr-Coulomb yield stress
τc in a granular material is

τc = c + µpe, (10.359)

where c is the cohesion, often ignored as being small for subglacial till. The coefficient
µ is of O(1), and is related to the angle of friction φf by µ = tan φf .

If we now consult (10.339) and (10.345), two observations can be made. Till
deformation will cease at effective pressures larger than τ/µ. Typical basal shear
stresses are likely to be in the range 0.1–1 bar, so that till will only deform at all if pe

is of this order. In particular, till deformation can only occur at values of Nc <∼ 1 bar.
Such low values of the effective stress have been measured under the Ross ice streams,
and may be associated with a distributed, canal type of drainage. Assuming, then,
that τ ∼ Nc, we see from (10.339) that till deformation is only viable to a depth of
order dT , as defined in (10.357). Below this depth, the effective pressure is too large
to promote till deformation. This observation allows us to suggest a typical value of
till transport.

The second observation is drawn from (10.345). If we anticipate that drumlins
grow as a consequence of instability of a flat bed, then the effective pressure increases
with drumlin elevation. When the drumlins attain an elevation of order dD given by
(10.357), the summit effective pressure will be large enough to slow down the till and
thus also deformation, which presumably stunts further growth. This depth scale
thus provides an estimate for the eventual height of drumlins. Choosing Nc = 0.4
bars gives a depth scale of 50 m, although numerical solutions generally give smaller
values.

We use these ideas in choosing scales for the variables. It is first convenient to
define a stream function for the flow via

ψz = u, −ψx = w. (10.360)

We take the basic shear flow without bed perturbations to be

ψ = u0z +
τb

2η
z2, (10.361)

where the mean velocity ū(t) is introduced as the developing bedforms alter the
average sliding velocity. Specifically, we scale the model by choosing

zi = dih, x, z ∼ l, pe, N, Π, τnn, τ ∼ Nc, s ∼ dD,
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ψ = u0ūz +
τb

2η
z2 + u0dDΨ, U ∼ u0, q ∼ u0dT , t ∼ dDl

dT u0
, (10.362)

and we scale the depth of the till by writing

s− z = dT ζ. (10.363)

Thus the dimensionless effective pressure in the till is

pe = N + ζ, (10.364)

and the yield criterion (10.358) becomes

ζ <
τ

µ
−N. (10.365)

The value of u0 is determined by the magnitude of the sliding velocity, and the
horizontal length scale is defined by balancing the stress and strain rates, thus

l =

(
ηu0dD

Nc

)1/2

=

(
ηu0

∆ρiwg

)1/2

. (10.366)

If we choose u0 = 100 m y−1 and η = 6 bar year (≈ 2× 1013 Pa s), then l = 271
m. Other typical values, with ρs = 2.5 × 103 kg m−3 and n = 0.4, are dT = 4.6 m,
and the time scale is 29 y.26

With this choice of scaling, the dimensionless model for the ice flow is

0 = −Πx +∇2Ψz + σθ,

0 = −Πz −∇2Ψx, (10.367)

with far field boundary conditions (appropriate for small σ)

Π→ 0, Ψ→ 0 as z →∞. (10.368)

The basal conditions take the form

−τnn =
2 [(1− ν2s2

x)Ψzx + νsx(θ + Ψzz −Ψxx)]

1 + ν2s2
x

,

τ =
(1− ν2s2

x)(θ + Ψzz −Ψxx)− 4νsxΨzx

1 + ν2s2
x

,

ū + νθz + νΨz − ν2Ψxsx

(1 + ν2s2
x)

1/2
= U(τ, N),

−Ψx = αst + [ū + νθz + νΨz] sx,

N = 1 + s + Π− τnn,

st + qx = 0, (10.369)

26This time scale is rather long, given recent observations of bedforms growing in a matter of
years. As we shall see below, the instability does in fact occur on a much shorter time scale (and
also on a shorter length scale).
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and these are all applied at z = νs.
The dimensionless parameters σ, θ, ν and α are defined by

σ =
l

di
, θ =

τb

Nc
, ν =

dD

l
, α =

dT

dD
. (10.370)

Supposing l = 300 m, di = 1500 m, thus τb = 0.15 bar with an assumed ice surface
slope of 10−3, dD = 50 m, Nc = 0.4 bar, dT = 5 m, typical values are

σ ∼ 0.2, θ ∼ 0.38, ν ∼ 0.16, α ∼ 0.1. (10.371)

We now simplify the model by considering the aspect ratio ν ' 1. Putting ν = 0
(and putting σ = 0 in the momentum equations), the reduced model is then

0 = −Πx +∇2Ψz,

0 = −Πz −∇2Ψx, (10.372)

with matching condition (10.368), and interfacial conditions applied at z = 0:

−τnn = 2Ψzx,

τ = θ + Ψzz −Ψxx,

ū = U(τ, N),

−Ψx = αst + ūsx,

N = 1 + s + Π− τnn,

st + qx = 0. (10.373)

The stability of the uniform solution of this reduced model is studied in the following
subsection.

It is straightforward to carry through this procedure in three dimensions (see also
question 10.16), and here we simply state the result. The position coordinates are
now (x, y, z), with y being the transverse horizontal coordinate, and the corresponding
velocity vector is (u, v, w) = u. The reduced dimensionless model is

∇ Π = ∇2u,

∇.u = 0, (10.374)

subject to
Π→ 0, uz → θ, v, w → 0 as z →∞, (10.375)
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and

τnn = 2wz,

τ1 = θ + uz + wx,

τ2 = vz + wy,

τ =
[
τ 2
1 + τ 2

2

]1/2
,

ū =
U(τ, N)τ1

τ
,

0 =
U(τ, N)τ2

τ
,

w = αst + ūsx,

N = 1 + s + Π− τnn,

st + ∇.q = 0, (10.376)

all applied at z = 0. One might suppose that, since also α is quite small, it too could
be neglected. As our linear stability analysis will show, this is not possible, since it
provides a stabilising term at high wave number.

Ice flow solution

Reverting to the two-dimensional problem, the ice flow problem is linear, and can be
solved conveniently using the Fourier transform

f̂(k) =

∫ ∞

−∞
f(x)eikx dx; (10.377)

omitting details, we then find that

N = 1 + s− 2H{αsxt + ūsxx} , (10.378)

where the Hilbert transform is

H(g) =
1

π
−
∫ ∞

−∞

g(t) dt

t− x
. (10.379)

The interfacial shear stress τ ≈ τ1 can be inverted to the form

τ = f(ū, N), (10.380)

while a horizontal average of this yields the condition

θ = f(ū, N), (10.381)

which serves to specify the average dimensionless sliding velocity ū.
The sediment flux q was taken to depend on τ and N . It is the product of a

dimensionless deformable till thickness A and a mean velocity V , which we suppose
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Figure 10.20: The function A(N) given by (10.382), where f(ū, N) = θūaN b. The
parameters used are b = 0.6, µ = 0.4, θ = 0.8, ū = 1.

is constrained by the ice velocity ū. The deformable depth is constrained by (10.365),
which suggests that we choose

A = A(N) =

[
f(ū, N)

µ
−N

]

+

(10.382)

([x]+ = max(x, 0)). Since we suppose V ∼ ū, which itself depends on N , we may as
well take V = 1 and thus q = A. Our model for bed elevation is thus completed by
solving the Exner equation

∂s

∂t
+

∂A(N)

∂x
= 0, (10.383)

together with the normal stress condition (10.378). Note that this is a nonlinear
model for the bed elevation. A typical form of the sediment flux function q = A is
shown in figure 10.20.

Linear stability

We now consider the linear stability of the reduced, two-dimensional model (10.378)
and (10.383). The basic uniform state is (assuming the sliding law τ = θūaN b)

N = 1, s = 0. (10.384)

For simplicity we suppose ū ≡ 1, which is in any case valid in the linearised theory.
We linearise about this basic state by putting N = 1 + P , and linearising for

small s and P . Denoting the transforms with an overhat, and using the facts that
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f̂x = −ikf̂ and Ĥ(gx) = −|k|ĝ, we find that ŝ ∝ eσt, with

σ =
ikA′(1− 2ik|k|)
1− 2ik|k|αA′ , (10.385)

where A′ = A′(1). With σ = r + ikc, this implies that the growth rate is

r =
2k2|k|A′(1− αA′)

1 + 4α2A′2k4
, (10.386)

and the wave speed is

c =
A′(1 + 4αA′k4)

1 + 4α2A′2k4
. (10.387)

Bearing in mind that α is relatively small, we see from (10.386) that the flat bed
is unstable if A′ > 0, or equivalently if q′ > 0. Since q = q(τ, N) and τ = f(u, N),
we can interpret this instability criterion as follows. If we draw the two families of
curves τ = f(u, N) with constant u, and q = q(τ, N) with constant q in the (N, τ)
plane, then the criterion q′ > 0 is equivalent (assuming qτ > 0) to

dτ

dN

∣∣∣∣
u

>
dτ

dN

∣∣∣∣
q

. (10.388)

This criterion is easily satisfied for reasonable choices of sediment flux and sliding
law. If we use the sliding law τ = θuaN b, then the instability criterion is

θ >
µ

b
. (10.389)

Providing the base of the ice is at the melting point, (10.389) shows that drumlins will
form for large enough basal shear stress, or for low enough channel effective pressure.
If we suppose that b is close to one, corresponding to a ‘plastic’ till, then the instability
criterion is that τb >∼ µNc, which is simply the criterion that the till should deform.
Roughly speaking, we can expect drumlinisation wherever till deforms.

The wave speed c is positive, and the growth rate has a maximum at a wavenumber

k = kmax =
31/4

(2αA′)1/2
. (10.390)

If we take α = 0.1 and A′ = 1
3 , then

2π

kmax
≈ 1.23, corresponding to a dimensional

wavelength of 334 m. The corresponding growth time scale is

tmax =
1

r
≈ 1 + 4α2A′2k2

max

2k3
maxA

′ ≈ 0.038, (10.391)

corresponding to a dimensional growth time of thirteen months. It is a hallmark of
the instability that it is rapid.
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Figure 10.21: Finite amplitude till surface obtained from solving (10.393) with a
suitable approximation for A(N) resembling figure 10.20. The two surfaces are the
ice base and the base of the deformable till layer (which is actually s−αA). The red
bands indicate the cavities, where N = 0.

Nonlinear results

The main difficulty in computing finite amplitude solutions of the model (10.378) with
(10.383) is that as the instability develops, N decreases until it inevitably reaches zero;
physically, cavities form in the lee of obstacles. If s continues to denote the base of the
ice flow, then while (10.378) still applies, the Exner equation 10.383 must be replaced
by the cavitation condition

N = 0. (10.392)

This makes the model difficult to solve numerically. One way round this is to continue
to solve (10.383), but to extend the definition of A so that it is any positive value
when N = 0. As in fact indicated in figure 10.20, this makes A a piecewise smooth
graph. The combined model is thus

N = 1 + s− 2H{αsxt + ūsxx} ,
∂s

∂t
+

∂a

∂x
= 0, (10.393)

with





a = A(N), N > 0,

a > 0, N = 0.
(10.394)
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Figure 10.22: An esker which formed during retreat of the Stagnation Glacier, Bylot
Island, Nunavut, Canada in 1992. The bouldery ridge in the background is the inner
face of the substantial lateral moraine surrounding the rapidly retreating glacier.
The landform is actually composed mostly of glacial ice preserved by the insulating
cover of about a metre of bouldery esker gravel. Photograph by Christian Zdanowicz,
available at www.inrs.illinois.edu/shilts.

In practice, we approximate the graph of A by a smooth non-monotonic function.
Despite this, the model is difficult to solve numerically. This is because as the os-
cillations grow, a transition takes place when the maximum of A is reached. When
this happens, there is a rapid transition to a state in which N is piecewise constant,
being positive on the upstream face of the bedforms, and (approximately) zero on
the downstream cavities. At this transition, a spectral method (used because of the
nice properties of the Hilbert transform in Hilbert space) generates transient high
frequency components which can cause numerical breakdown. Figure 10.21 shows
the result of one such calculation, in which the positions of the cavities are indicated
in red. In this model, the drumlins reach a stationary state. In more detailed models,
they form finite amplitude travelling waves, as discussed in the notes.

10.5.2 Eskers

Eskers are long, sinuous ridges of sand and gravel which, like drumlins, are associ-
ated with the existence of former ice sheets. They are thought to form through the
deposition of sediments in sub-glacial or ice-walled pro-glacial channels, and form
anastomosing patterns such as that in figure 10.18. On the ground, they look as
shown in figure 10.22, although eskers which form under ice sheets are generally
larger, having elevations in the range 10–50 m, and widths of 50–500 m. And they
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are often shrouded in trees, and only properly visible from the air. In length, they can
sometimes be traced for hundreds of kilometres, although often they are segmented.
Indeed, eskers are often ‘beaded’, either consisting of independent beads, or having
oscillations in elevation along their length.

Because they consist of sorted sands and gravels, they are associated with chan-
nelised water flow, but the detailed way in which they form is not properly known.
Generally, they are associated with retreating ice, and are thought to form at the
margin of the ice sheet. The sediment might be deposited within the sub-glacial
channel. Alternatively, deposits might occur pro-glacially in a stream walled by dead
ice; or, if the ice terminates in a pro-glacial lake, a sub-aqueous fan may occur. In
all these cases, one imagines the esker being built regressively as the ice retreats;
however, little is directly known of the process, and it is not inconceivable that eskers
could form wholly below the ice sheet.

Models for the construction of eskers do not yet exist, but a clue to their formu-
lation lies in our earlier discussion of different drainage theories. In our discussion of
canals (section 10.3.3), we posited a drainage style in which a sediment-floored canal
lay beneath an essentially flat roof. The astute reader will have been concerned as
to why the ice roof should be flat, as no grounds were given for this supposition.
Suppose the elevation of the ice roof above the local ice/till interface is hi, and the
depth of the stream base below it is hs. Then the Röthlisberger channel corresponds
to the assumption hi > 0, hs = 0, while the canal corresponds to the assumption
hi = 0, hs > 0; an intermediate case has both being positive.

What is missing in our model is any reason for either assumption, but we can in
principle supply a reason by positing a model in which both hi and hs are variables.
We do this below, but now we can also realise that there is no reason why we cannot
also have the cases hi > 0, hs < 0 and hi < 0, hs > 0; in the former case, sediment is
deposited while the channel flow is maintained above it: this presumably corresponds
to esker formation. In the latter case, the ice squeezes down while the stream evac-
uates the sediment; this corresponds to the formation of tunnel valleys.27 Thus, at
least in principle, a single model could predict all these features.

To see the structure of such a model, we generalise the discussion in section 10.3.3
to allow for separate ice roof elevation hi and sediment floor depth hs. In its simplest
form, the model is written

∂(whi)

∂t
=

ṁi

ρi
− w2

ηi
(N + ∆ρwighi),

∂(whs)

∂t
=

ṁs

ρs
− w2

ηs
(N + ∆ρswghs); (10.395)

these represent the kinematic equations for the ice/water interface and the till/water
interface, respectively, and involve a melting rate ṁi, erosion rate ṁs, and ice and

27Tunnel valleys are large (hundreds of metres deep, kilometres wide) braided systems of former
drainage channels (presumably), often infilled with sediment. They are found in Northern Germany
and Denmark, for example.
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till viscosities ηi and ηs.28 The particular closure relations in (10.395) are those for a
wide channel, and for geometric simplicity we suppose the wetted perimeter l = 2w,
where w is the channel width. From (10.238), (10.239), (10.240) and (10.242), we
have

ṁi = CiQ, (10.396)

where

Ci =
ρigSi

2L
. (10.397)

The erosion rate of a subglacial stream is a more complex matter. For a stream
with banks, we might suppose erosion of the sides by bank collapse is proportional
to the stream power. However, if the till squeezes up into the channel, there are no
‘banks’, and the erosion rate should presumably decrease to zero, unless we imagine
a stream of varying cross section, thus with erosion in the shallows, and the principal
downstream sediment transport in the deeper flow. For such a case, it is plausible to
provide an analogous description for erosion rate,

ṁs = CsQ, (10.398)

where

Cs =
ρigSi

2LE
, (10.399)

and LE is a term representing latent work of erosion. Finally, the extra gravita-
tional terms in the closure rates arise through the contribution of the respective bed
elevations to the driving hydraulic closure stress.

If we take the Chézy friction law τ = fρwu2, then u =
√

Ch, where

C =
ρigSi

2fρw
, (10.400)

and the water flux is
Q = C1/2wh3/2, (10.401)

where h is the total depth,
h = hi + hs. (10.402)

If we suppose that sediment flux Qs is described by a Meyer-Peter and Müller
relation, then we have (cf. (6.14), or (5.5) and (5.6)),

Qs = K ′w(h− hc)
3/2, (10.403)

where

K ′ =
ρiKSi

∆ρsw

(
ρigSi

8ρw

)1/2

, hc =
2τ ∗c ∆ρswDs

ρiSi
, (10.404)

with τ ∗c ≈ 0.05, K = 8. The units of Qs are m3 s−1.

28More exactly, they are parameters proportional to the viscosities with some suitable geometry-
dependent coefficients.
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In Röthlisberger channel theory, mass conservation of water determines the water
volume flux Q as a function of distance downstream, and we might suppose that the
equation of sediment conservation would likewise determine the sediment volume flux
Qs, both of them being increasing functions of distance downstream. This being so,
the three equations in (10.395) and (10.402) serve to determine the three quantities
N , hi and hs, with the channel width w and depth h being determined by (10.401)
and (10.403). Unique values of h > hc and w exist provided

Qs

Q
<

K ′
√

C
, (10.405)

and we suppose this to be true.
Steady solutions for hi and N are then

hi =
(Ai − As)h3

∆ρsiQ
+

∆ρsw

∆ρsi
h, (10.406)

where

Ai =
ηiCCi

ρig
, As =

ηsCCs

ρsg
, (10.407)

and

N =
g∆ρwi∆ρsw

∆ρsi

[
h2

β2Q
− 1

]
h, (10.408)

where

β =

(
∆ρwi∆ρsw

∆ρswAi + ∆ρwiAs

)1/2

. (10.409)

It is useful to write (10.406) in the form

hi =
B(1− χ)h3

Q
+ rh, (10.410)

where

B =
ρigS2

i ηi

4fρw∆ρsiL
, χ =

As

Ai
=

ρiLηs

ρsLEηi
, r =

∆ρsw

∆ρsi
. (10.411)

In figure 10.23 we plot representative graphs of hi versus h for values Ai > As

(χ < 1) and Ai < As (χ > 1). The physically accessible space where h > 0 is divided
into three regions. When 0 < hi < h, channels exist, with both the ice and the
sediment being excavated. There are two particular cases: hi = h corresponds to a
Röthlisberger channel, while hi = 0 corresponds to a canal. If hi > h, then hs < 0:
the sediment infiltrates the channel, causing an esker to form. If hi < 0, the ice
collapses, forming a tunnel valley.

As sediment flux and water discharge increase downstream, h (determined by(
1− hc

h

)3

=
CQ2

s

K ′2Q2
) may increase or decrease; plausibly it remains constant (if

Qs/Q is constant). However, as Q increases, the upper and lower curves become
steeper, so that in this simple theory, eskers or tunnel valleys are promoted at larger
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Figure 10.23: Ice roof elevation in metres as a function of channel depth in metres,

based on (10.411), using values B = 0.8 m s−1, r = 0.95, and values of χ =
As

Ai
= 0.8

(upper curve) and χ =
As

Ai
= 1.2 (lower curve). Channels exist for small volume and

sediment fluxes, but eskers or tunnel valleys develop at larger fluxes, depending on
the stiffness of the till. The lines hi = h (marked R) and hi = 0 (marked C) indicate
Röthlisberger channels and canals, respectively.

water fluxes, and which of them occurs depends sensitively on the stiffness of the till
via the definition of χ. Stiff till (high χ) promotes tunnel valley formation, while soft
till (high χ) promotes esker formation. Note that, from (10.408), N increases with
h, and is only positive for h > β

√
Q. We associate the lower limit with the onset of

channelised flow, supposing that for lower h, a distributed film flow exists, much as
discussed earlier.

The present discussion promotes a pedagogical point, which is that it may be pos-
sible to provide an understanding of eskers and tunnel valleys, as well as Röthlisberger
channels or canal, all on the basis of a self-consistent description of drainage mechan-
ics. However, our rudimentary discussion falls a fair way short of genuine prediction.
Most obviously, the ice viscosity depends on N , as does the till rheology (strongly, if it
is essentially plastic), and so the critical parameter χ will depend on N and thus also
h. In addition, variation with space and time is likely to be important. Furthermore,
it is not immediately obvious whether the drainage characteristics of the different
types of channel or canal are consistent with our earlier discussion of them.
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Figure 10.24: Mars orbital camera (MOC) image of the North Polar Ice Cap of Mars.

10.6 Glaciology on Mars

We are used to the existence of glaciers and ice sheets on Earth, but ice also exists
elsewhere in the solar system, and is the source of interesting and elusive phenomena.
As an example, we consider the polar ice caps of Mars. These apparently consist
largely of water ice, and that at the north pole is the larger, being comparable in size
to the Greenland ice sheet. Both ice caps are covered in their respective winters by
an annual layer of CO2 frost, which sublimates in the summer, leaving the residual
ice caps.

We will focus our attention on the northern ice cap, shown in figure 10.24, which
is some 3 kilometres in depth, and 1000 km in horizontal extent. As can be seen in
the picture, this ice cap is quite unlike the large ice sheets on Earth. The surface is
irregular. In particular, there is a large canyon which looks as if it has been gouged
from the ice surface, towards the left of the picture. This is the Chasma Borealis.
The other pronounced feature of the ice cap consists of the stripes on the surface.
These stripes are arranged in a spiral, rotating anti-clockwise, and they consist of
concentrations of dust, associated with a series of troughs in the ice. Figure 10.25
shows the troughs, carved into a cross section of the ice cap.

The spiral waves suggest a formation mechanism similar to that of the Fitzhugh-
Nagumo equations, which form a reaction-diffusion system of activator-inhibitor type.
When the kinetics of the reaction terms are oscillatorily unstable, the addition of
diffusion causes the oscillations to propagate as travelling waves. The presence of
‘impurities’ can cause these waves to propagate as spiral waves (cf. question 1.20).
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Figure 10.25: A cross section of the North Polar Ice Cap, showing the scarps and
canyons. Redrawn from Ivanov and Muhleman (2000). The height is relative to a
plane 5 km below the mean geoid. The North Pole is near the summit.

We thus set out seeking a model whose time-dependent behaviour is oscillatory.
This can most easily be obtained by identifying a positive feedback in the system. The
mechanism we will use is that of dust-albedo feedback. Dust on the surface causes a
reduced albedo, and thus a greater absorption of solar radiation. In turn this leads
to greater sublimation of the ice, and thus increasing residual dust concentration.

Fundamental quantities in the model are thus the albedo a, the dust fraction of
ice at the surface, φ, and the mass rate of sublimation mi. The rate of sublimation
(or condensation) is given by

mi = K(ps − p), (10.412)

where the rate coefficient K depends on wind speed and temperature, p is atmospheric
water vapour pressure, and ps is the saturation vapour pressures, given in terms of
absolute temperature T by

ps = pref
s exp

[
B

{
1− Tref

T

}]
, (10.413)

where ps = pref
s at T = Tref ; for water vapour, we may take Tref = 273 K at pref

s = 6
mbar (= 600 Pa), the triple point, and the parameter B is given by

B =
MwL

RTref
, (10.414)

where Mw is the molecular weight of water, and R is the gas constant.
Albedo and sublimation rate are related by the radiative energy balance law

I(1− a) =
σT 4

Γ
+ miL, (10.415)
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where I is received solar insolation, Γ is a greenhouse factor which may depend on
atmospheric dust and water vapour concentrations, and L is latent heat; the albedo
will depend on the amount of dust in the ice.

Let us denote the ice surface accumulation rate of dust as ms, with units of mass
per unit area per unit time. Then the rate of decrease of ice surface elevation due
both to sublimation/condensation and dust accrual is

s =
mi

ρi
− ms

ρs
. (10.416)

The basic equation describing the ice cap elevation h is then the dimensional equiv-
alent of (10.45), which can be written in the form

∂h

∂t
= −s +

∂

∂x

(
Di

∂h

∂x

)
, (10.417)

where the effective diffusion coefficient is given by

Di =
2A(ρg)n

n + 2
|hx|n−1hn+2, (10.418)

A being the Glen flow rate coefficient for ice, assumed constant. In our discussion we
will assume that Di is constant: a simple estimate of its appropriate size is Di ∼ uili,
where ui is a typical ice velocity, and li is the ice cap radius.29

We introduce the atmospheric water vapour concentration ρ and the atmospheric
dust concentration c (both measured as mass per unit volume), noting that we may
expect the greenhouse factor Γ = Γ(ρ, c). The water vapour pressure is then given by
the perfect gas law

p =
ρRT

Mw
, (10.419)

where R is the gas constant and Mw is the molecular weight of water. The subsidiary
variables mi, ps, T and p are defined by (10.412), (10.413), (10.415) and (10.419). A
further two relations are then necessary to determine ρ and c. These arise from the
concepts of sediment transport as expounded in chapter 5.

First, we propose two equations which describe conservation of mass of dust and
water vapour in the near surface boundary layer. We will assume that a polar kata-
batic wind will flow downslope, transporting water vapour and dust in a thin near
surface current. This current will entrain dust and water vapour from the troposphere
above. If the current is of depth H, then suitable conservation laws for the vertically
averaged vapour and dust concentrations ρ and c in the katabatic layer are

∂(Hc)

∂t
+

∂(qc)

∂x
= Ec + ρsvE − vsc +

∂

∂x

(
DcH

∂c

∂x

)
,

∂(Hρ)

∂t
+

∂(qρ)

∂x
= Eρ + mi +

∂

∂x

(
DρH

∂ρ

∂x

)
, (10.420)

29A consequence of the assumption of constant Di will be that a finite gradient of h at the margin
will imply non-zero ice flux there. This is unrealistic, and in particular, the existence of a steady

state ice cap requires that the net balance be zero, i. e.,
∫ li

0
s dx = 0.
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where q is the katabatic wind flux, Ec and Eρ are the entrainment rates of dust
and vapour from the overlying troposphere, and Dc and Dρ are turbulent horizontal
diffusivities in the katabatic layer. Just as in chapter 5, the term ρsvE represents
erosion of dust from the surface, and the term vsc represents deposition of dust at
the surface via settling; vs is the settling velocity, and vE is an erosional velocity.

The velocities vs and vE need to be specified, as do the amounts of frozen and
unfrozen dust at the surface, and the ice dust accrual rate ms. A reasonably general
assumption about the surface is that there may be a thin surface layer of unfrozen
dust which mantles the ice. If the ‘depth’ of this layer is F ,30 then conservation of
unfrozen dust takes the form

ρs
∂F

∂t
= −ρsvE + vsc−ms. (10.421)

This layer is quite analogous to the bedload layer described in section 6.3 (and F is
analogous to (1− φ)a in (6.7)).

In addition, we suppose that the ice at the surface (below the unfrozen layer)
contains a volume fraction φ of dust. If F .= 0, we can expect in general that the
albedo is given by a = a(φ, F ). It then remains to constitute φ and ms. Quite
generally, we find that for both sublimation and condensation

ms = −ρsφs, (10.422)

and thus from (10.416)
mi = ρi(1− φ)s. (10.423)

If s > 0,

φ = φ(x, τ),
∫ t

τ

s(t′) dt′ = 0 for s > 0. (10.424)

This simply states that if sublimation is occurring, the surface ice dust fraction is
equal to its value at the last time the surface was exposed. Actually, (10.424) is an
oversimplification, as it ignores the horizontal transport of the buried previous ice
surface by ice flow. If s < 0, we suppose

φ = φs, s < 0, (10.425)

where φs is the dust volume fraction of the unfrozen dust layer. This assumes that
F > 0.

If F ≡ 0 over a time interval, then ms is still defined by (10.422), (10.421) is
irrelevant, and the ice surface dust fraction is determined by a balance between volume
of ice accretion and volume of dust deposited, thus

φ =
cvs − ρsvE

cvs − ρsvE − rsimi
, F ≡ 0, (10.426)

30More precisely, F is the volume of unfrozen dust per unit surface area.
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so long as φ is positive, where

rsi =
ρs

ρi
. (10.427)

The discussion above assumes implicitly that condensation of ice occurs directly
at the surface. A different possibility is that condensation occurs as snowfall. If the
snow crystals are pure, then there is no difference in the model. However, we might
also suppose that ice crystals nucleate on dust particles, so that dust accumulation
in the ice is partly due to this. If in fact there is no deposition of unfrozen dust (thus
F = 0), then when s < 0 (it is snowing), the surface ice dust fraction will be that
of the snow particles. A simple partitioning by volume fraction of dust within snow
then suggests

φ =
c

c + rsiρ
, s < 0 (snowfall). (10.428)

10.6.1 Non-dimensionalisation

We now proceed to make this model non-dimensional. We mostly denote appropriate
scales with a subscript zero, and in particular we scale the variables as

m ∼ m0, p, ps ∼ p0, T ∼ T0, I ∼ I0,

s ∼ s0, h ∼ h0, t ∼ t0, x ∼ li, ρ ∼ ρ0,

c ∼ c0, q ∼ q0, F ∼ F0, (10.429)

and we write
1− a

1− a0
= α. K =

K ′κ

T
, (10.430)

and suppose K ′ is constant, such that κ = 1 when there is no surface dust layer,
F = 0: in general, we may expect κ to be a rapidly decreasing function of F ; a0 is
the albedo of clean Martian ice. Balances of terms in the equations are effected by
writing

T0 =

(
I0(1− a0)

σ

)1/4

, p0 = pref
s exp

[
B

{
1− Tref

T0

}]
,

m0 =
K ′p0

T0
, s0 =

m0

ρi
, t0 =

l2i
Di

,

h0 = s0t0, ρ0 =
Mwp0

RT0
; (10.431)

in addition, the choice of q0 is found from a prescription for the katabatic wind
(see below), while F0 is the depth of an unfrozen dust layer over which κ decreases
significantly. Of the twelve scales in (10.429), (10.431) provides definition of seven;
in addition, q0 and F0 are determined as described above, while we suppose also that
I0 is known from the received solar radiation. This leaves us two scales (li and c0)
to be determined, and this will be done by prescription of two of the dimensionless
parameters which emerge in the model. We also write

vE = v0VE, (10.432)

710



and suppose v0 is known.
The dimensionless version of the model can then be written in the form

ht = −s + hxx,

µct + (qc)x = Rc + ν(λVE − c) + Dcxx,

µρt + (qρ)x = Rρ + γ(1− φ)s + Dρxx,

δFt = σ(c− λVE) + φs, (10.433)

where

s =
κ

1− φ

[
1

T
exp

{
β

(
1− 1

T

)}
− ρ

]
,

T = Γ [Iα− ε(1− φ)s] , (10.434)

and the parameters are defined by

µ =
Hli
q0t0

, D =
DcH

q0li
=

DρH

q0li
,

δ =
F0

h0
, Rc =

liEc

q0c0
, Rρ =

liEρ

q0ρ0
,

β =
MwL

RT0
, ε =

K ′p0L

σT 5
0

, λ =
ρsv0

vsc0
,

σ =
vsc0

ρss0
, ν =

vsli
q0

, γ =
ρis0li
q0ρ0

. (10.435)

The issue now arises, how to choose the scales li and c0. To do this, we need some
understanding of how the model works, and for that, we need some idea of the size
of the parameters.

We take values I0 = 130 W m−2, a0 = 0.3, so that, with σ = 5.67× 10−8 W m−2

K−4, we find T0 = 200 K. We use values Mw = 18 × 10−3 kg mole−1, L = 2.8 × 106

J kg−1, R = 8.3 J mole−1 K−1, Tref = 273 K, pref
s = 600 Pa, from which we find

p0
s ≈ 0.18 Pa, and thus ρ0 = 2 × 10−5 kg m−3. We take K ′ = 2.2 × 10−5 m−1 s

K, whence we find m0 ≈ 2 × 10−8 kg m−2 s−1, and with ρi ∼ 0.9 × 103 kg m−3,
s0 ≈ 2.2× 10−11 m s−1.

We suppose that a katabatic wind of magnitude uw = 10 m s−1 exists in a layer
of depth H = 100 m, so that we take q0 = 103 m2 s−1. To estimate Di, we use
(10.418) with n = 3 to motivate the choice Di ≈ D̄h7

0, where D̄ = 0.4A(ρig)3/l2i , and
we use the observed value li = 500 km, and A = 3× 10−27 Pa−3 s−1, based on a basal
ice temperature of 220 K, itself based on a surface ice temperature of 200 K and an
areothermal heat flux of 20 mW m−2. Using the definitions of the depth scale, time
scale and diffusion coefficient, this leads to

h0 =

(
s0l2i
D̄

)1/8

≈ 3,600 m, (10.436)
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and then t0 ≈ 1.6 × 1014 s ≈ 5 Ma and Di = 1.6 × 10−3 m2 s−1 (corresponding to
an ice velocity of some 0.1 m y−1). We suppose that the depth scale over which a
surface dust layer occludes the ice reflectivity is F0 = 1 cm, and we take the turbulent
diffusivity of the katabatic layer to be Dc = Dρ = 0.1uwH = 0.1q0.

With all these values, we find

µ ≈ 0.3× 10−9, D ≈ 2× 10−5, δ ≈ 0.3× 10−5,

β ≈ 30.4, ε ≈ 0.6× 10−3, γ ≈ 0.5. (10.437)

The values of σ, λ and ν depend on what we assume about erosion and settlement
of dust. We suppose that suspended dust grains have a diameter of the order of 1–2
microns. Then the Stokes settling velocity (5.8) is

vs =
∆ρgD2

s

18η
≈ 10−4 m s−1, (10.438)

assuming ∆ρ = 2 × 103 kg m−3, g = 3.7 m s−2, and the atmospheric viscosity is
η = 10−5 Pa s; we also suppose (see (5.7) and the line after (5.9)) that v0 ≈ 10−2vs.

If we define A =
c0

ρs
, then we have

σ ≈ 0.5× 107A, ν ≈ 0.05, λ ≈ 10−2

A
. (10.439)

The sizes (and signs) of the entrainment parameters Rc and Rρ depend on what
we assume about the entrainment rates Ec and Eρ. There is little to guide us in
this, except for the expectation that the numerators of Rc and Rρ represent the total
entrained dust and vapour, while the denominators represent the magnitude of the
downslope fluxes; we thus expect numerators and denominators to be comparable,
and this suggests that in practice Rc, Rρ <∼ O(1).

The issue of how we choose the precise values of li and c0 now arises. The fact that
numerically the parameter γ = O(1) is strongly suggestive of the idea that we choose
li by requiring that γ = O(1), and without loss of generality we may define γ = 1.
The choice of c0 depends on how we imagine the dust behaves at the ice surface.
One possibility is that the dust-albedo feedback is engineered through occasional
atmospheric dust storms, which affects the temperature through the dependence of Γ
and α on c. In this view, F ≡ 0; the settlement velocity is so small that no accretion
can occur, and dust is incorporated in the surface via snowfall, wherein ice accretes
on dust nuclei. We then choose c0 by requiring that

ν = σ, (10.440)

which is equivalent (with γ = 1) to choosing

c0 = rsiρ0, (10.441)

where rsi is given by (10.427). It then follows from (10.428) that, dimensionlessly,

φ =
c

c + ρ
, s < 0, (10.442)
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and in fact we will assume that (10.442) applies also for s > 0.
The equations for c and ρ now take the form

µct + (qc)x = Rc + φs + Dcxx,

µρt + (qρ)x = Rρ + (1− φ)s + Dρxx, (10.443)

and can be combined if we suppose that µ, Rc, Rρ and D are all small, and that q is
constant. With the definition of φ in (10.442), we then have

dc

dρ
=

φ

1− φ
=

c

ρ
, (10.444)

whence c ∝ ρ, and thus φ is constant. With this assumption, we can eliminate ρ from
the definition of s, and the equation for c takes the form

µct + (qc)x = Rc + φs(T, c) + Dcxx, (10.445)

where s can be expressed as

s =
1

(1− φ)T
exp

{
β

(
1− 1

T

)}
− c

φ
. (10.446)

Because ε is small, we can take
T ≈ IΓα. (10.447)

The dimensionless incident radiation depends weakly on slope, and can be taken to
be

I = I0(c)(1−mhx), (10.448)

where m ≈ 0.02. The incident radiation may also depend on dustiness through the
cooling effect associated with increased reflectivity in a dusty atmosphere, hence the
decreasing function I0(c). In general, the scaled co-albedo α will be an increasing
function of both φ and F ; here we take it to be constant, α = 1. The feedback in this
version of the model thus operates through the dependence of the greenhouse factor
Γ on c: Γ is an increasing function of c. Because β in (10.446) is large, s is very
sensitive to c.

The ‘derivation’ of (10.445) is suggestive rather than rigorous, but will serve as
the basis of a model for trough formation. Whether the conclusions we draw will
extend to the full system, and indeed, whether the concept of dust suspension and
snowfall is correct at all: these are questions which await further study.

10.6.2 Multiple steady states.

The reduced model which we now consider is that for h and c described by (10.433)1

and (10.445), with s and T defined by (10.446), (10.447) and (10.448). It is clear from
the definition of s in (10.446) that if T increases with c, then s can be non-monotonic.
In general, s may have three zeroes as a function of c, and if we allow for the cooling
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Figure 10.26: The sublimation function s defined by (10.446), where we take T =
(1 − σc)(1 − mhx)(1 + gc), and use values m = 0.02, −hx = 1, g = 0.05, β = 30,
σ = 0.023, φ = 0.2.

effect of a dusty atmosphere at high dust concentrations, the highest zero can be quite
modest, as indicated in figure 10.26.

The non-monotonicity of s allows the possibility of multiple steady states. The
simplest way to see this is to consider (10.445) with q constant, and to ignore the very
small terms in µ and D (we will reconsider their importance subsequently). With q
constant, a summit condition for c must be prescribed at x = 0. If s(c) has three
zeroes as shown in figure 10.26, denoted c1, c2 and c3, then for sufficiently small Rc, c
will tend towards either the largest or smallest zero of Rc + φs. For both values, the
value of s = −Rc/φ is the same and the steady profile for h is a parabola,

h =
Rc

2φ
(1− x2), (10.449)

assuming boundary conditions

hx = 0 at x = 0, h = 0 at x = 1. (10.450)

The multiplicity above depends on the choice of summit dust concentration, and
this is somewhat artificial, as there is no physical reason to prescribe c at the summit.
In reality, the downslope katabatic wind must be zero at the summit, so that in general
q will depend on the slope −hx. The simplest assumption is to take

q = −hx, (10.451)
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and in this case, the equation for c is degenerate. Satisfaction of (10.445) (with
µ = D = 0) at x = 0 requires c to satisfy

(φ + c)s(c) = −Rc. (10.452)

Again, there can be three different values, and each of these leads to a genuinely
different solution for h and c. In particular, if we denote a zero of (10.452) as c∗, then
the steady state solution for h corresponding to c = c∗ is

h =
Rc

2(φ + c∗)
(1− x2); (10.453)

in particular, when c∗ is large, the ice cap is essentially removed.
The discussion above assumes s independent of slope, i. e., m = 0. Non-zero values

of m modify the discussion, but only quantitatively.

10.6.3 Trough formation

The presence of multiple steady states suggests the possibility of hysteretic transitions
between the lowest and highest values of c. We expect the middle steady state to be
unstable. Although the steady state solutions depend on x, and in particular, c = c(x)
if m .= 0, we will continue to refer to the steady states in terms of the (possibly three)
solutions of (10.452) as c∗i , i = 1, 2, 3, bearing in mind that the space-dependent
solutions for c are simply the continuation to m .= 0 of the constant solutions.

Suppose now that incident radiation I increases so that c∗1 and c∗2 coalesce and
disappear; essentially the graph of s in figure 10.26 is pulled upwards. A pre-existing
ice cap with c = c∗1 will undergo a transition to c = c∗3: the ice cap will disappear.
How does this happen? The slope dependence of T and thus s means that coalescence
of the roots occurs first, locally, where the slope −hx is greatest, at the margin of
the ice cap. As I increases further, the point on the ice cap where coalescence occurs
moves progressively back towards the summit.

In order to describe the transition, we consider the system

ht = −s + hxx,

µct − (hxc)x = Rc + φs + Dcxx, (10.454)

and to mimic the dependence of s on c and −hx, we choose

s = f(c) + ∆I −mhx, (10.455)

with

f(c) = A(c− c1)(c− c2)

(
1− c

c3

)
, (10.456)

where we expect c1, c2 ∼ O(1), c3 ) 1, A >∼ 1. We define

c = c3C, f = Ac2
3g, s = Ac2

3S, t =
µ

Ac3
τ,
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x = xB(τ) +

√
D

Ac3
ξ, h = h0(x) + λH, (10.457)

where
λ = µ

√
ADc3/2

3 , (10.458)

so that

g =

(
C − c1

c3

) (
C − c2

c3

)
(1− C) ≈ C2(1− C), (10.459)

S = g(C) +
∆I

Ac2
3

− mh′0
Ac2

3

− µmHξ, (10.460)

and if we define

ẋB = − h′0
Ac3

, (10.461)

then H and C satisfy

√
c3DAHτ + h′0Hξ = −S +

h′′0
Ac2

3

+ µ

√
Ac3

D
Hξξ,

Cτ = φS +
Rc

Ac2
3

+
h′′0C

Ac3
+ Cξξ + Λ (HξC)ξ , (10.462)

where

Λ =
λ

D
=

µc3/2
3

√
A√

D
. (10.463)

Suppose firstly that Λ' 1. In that case, C satisfies

Cτ ≈ φg(C) + Cξξ. (10.464)

For small C, g ≈ C2, and and an initial blow-up begins to occur, in which C tends
to infinity at finite time at one position. However, when C ∼ O(1), g ≈ C2(1 − C),
and C saturates at C = 1 and a pair of travelling waves propagate outwards from the
initial blow-up position.

The consequent perturbation to the depth is computed from (10.462)1. If we

assume
√

c3DA' 1, µ

√
c3A

D
' 1, then H is approximately given by

H ≈ 1

h′0

∫ ∞

ξ

S dξ, (10.465)

and this describes the front of the trough.31 As ξ → −∞, the depth of the trough is

∆H =
1

|h′0|

∫ ∞

−∞
S dξ. (10.466)

31We have applied the boundary condition that H → 0 as ξ →∞, rather than H → 0 as ξ → −∞;
why?
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This is not a uniformly valid description of H, because we require H → 0 as
ξ → −∞. Behind the blow-up region for C, the diffusion term and time derivative of
H become significant. Essentially, the trough drawdown diffuses backwards. We can
recover this region by defining

ξ = µ

√
c3A

D
X, τ = µc3AT, (10.467)

and then

HT − |h′0|HX = HXX +
µ
√

c3A√
D

(
−S +

h′′0
Ac2

3

)
, (10.468)

with H = 0 on T = 0, X < 0 and as X → −∞, and H = −∆H at X = 0. At large
times, the solution of this is essentially

H ≈ −1
2∆H erfc

(
−X + |h′0|T

2
√

T

)
, (10.469)

and one can show that this diffusive wave travels backwards relative to xB at the
same rate that xB travels forwards.

The consequence of all this is that local blow-up of c causes a trough to form and
deepen as the region of saturated dust spreads. The trough thus formed will have an
essentially stationary rear face of length O (µ), and a shallower front face of length

O

(
µ

√
c3

D

)
(and these slopes become less severe with time).

If we take µ = 10−10, D = 10−6, c3 = 104, A = 1, then Λ = 0.1; uncertainty in
parameter values means that in practice values of Λ = O(1) are plausible. In this
case, we cannot neglect the extra term in (10.462)2. However, note that the diffusive

coefficient µ

√
Ac3

D
=

Λ

c3
in (10.462)1 remains small. If in addition

√
c3DA' 1, then

it is still the case that h′0Hξ ≈ −g(C), so that the blow-up equation (10.464) is simply
modified to

Cτ −
Λ

|h′0|
{Cg(C)}ξ ≈ φg(C) + Cξξ, (10.470)

and the same blow-up and formation of travelling waves occurs, modifed only by the
advective drift upstream.

If in addition
√

c3DA ∼ O(1), then the time derivative term in (10.462)1 comes
into play. By inspection, it seems that blow-up will still occur, and that there will be
travelling wave solutions also in this case (see question 10.19).

10.6.4 Multiple troughs

Our discussion shows that troughs can form through local blow-up of the dust con-
centration profile. In order to describe the Martian polar caps, we need this blow-up
to occur at many different places along the surface. The simplest way in which this
can occur is that as the insolation increment ∆I increases to the point where the
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Figure 10.27: A simulation of the equations (10.454), (10.455) and (10.456). The
space variable has been rescaled as x = X/L (largely for historical reasons, so that
the trough spacing in X will be O(1)), and the equations are then solved in the same
form, but using rescaled variables T = L2t, S = s/L2, and with modified parameters
R̄ = Rc/L2, Ī = ∆I/L2, Ā = A/L2, m̄ = m/L. The parameter values used to
obtain the sequence of profiles of h above (plotted at time intervals in T of 0.2 up
to a maximum of 2.6) are then L = 50, m̄ = 0.14, R̄ = 0.001, µ = 0.1, D = 0.002,
Ī = 0.24 + 0.02T , c3 = 90, Ā = 1, φ = 0.2, time step ∆T = 0.005 and space

step ∆X = 0.002. The initial profile for h is h0 = 0.8

(
1− X2

L2

)
, and the initial

concentration profile for c is c0 = 1.5− 0.005X + 0.02 sin

(
2πX

3

)
.

steady states c1 and c2 coalesce, the resulting instability occurs at a non-zero wave
number.

A straightforward local instability analysis of (10.454) and (10.455) suggests that
normal modes proportional to exp(ikx + σt) have slow solutions (corresponding to

diffusive ice surface relaxation) Reσ ∼ −k2, and rapid growth solutions Reσ ∼ φf ′

µ
,

assuming µ and D are small. A next approximation is then (if the steady dust
concentratrion is c0)

Reσ ≈ φf ′ +

(
µc0

φ
−D

)
k2 + . . . , (10.471)

so that we can expect growth of troughs if D is sufficiently small.32

32But not if µ < D, as we have suggested.
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Figure 10.27 shows a simulation in which troughs grow from an initial state in
which a small superimposed sinusoidal variation of dust concentration is applied. This
figure is suggestive of the idea that the model has the ability to reproduce features
which resemble the Martian troughs, but it is by no means clear that the simple
theory suggested here is correct. Further discussion follows in the notes. In the
model, trough formation occurs as the initial stages of collapse of the polar ice cap.
Numerical outputs vary widely with parameter choices. In particular, it is common
to find initial blow-up near the margin, leading to a large trough reminiscent of the
Chasma Borealis.

10.7 Notes and references

The best source for general information about glaciers and ice sheets is the book
by Paterson (1994). This famous book was first published in 1968, upgraded to
a second edition in 1981 (but in typescript), then to an apparently terminal third
edition (and in LaTeX) in 1994, and now miraculously to a fourth edition (Cuffey
and Paterson 2010). Other books with a similar aim are those by Hooke (2005)
and Van der Veen (1999). Books which are more concerned with observations in
the field and geomorphic processes include those by Benn and Evans (1998) and
Bennett and Glasser (2010), while the books by Lliboutry (1987) and Hutter (1983)
are much more abstract. Lliboutry’s (1964, 1965) earlier voluminous work gives useful
descriptions of early work in the subject, particularly in the nineteenth century, but
was unfortunately never translated from the French. There is a good deal of historical
and geographical material, but the theoretical parts are inevitably dated.

From its origins as a hobby for geographers and climbers, glaciology has come to
occupy centre stage in the modern preoccupation with climate, and there are many
popular books detailing some of the more recent discoveries. Amongst these are the
books by Imbrie and Imbrie (1979), Alley (2002) and Walker (2003): the first two by
scientists, the third by a journalist, all of them entertaining.

Scaling

Apart from some of the work at the end of the nineteenth century, detailed by
Lliboutry (1965), the application of theoretical mechanics to problems in glaciol-
ogy really begins after the second world war with the work of Nye, Weertman and
Lliboutry. Egged on by the vituperative Lliboutry, the decades after the war saw
enormous advances in the theoretical understanding of glacier flow. Applied mathe-
matical principles come late to the scene, so that even something as simple as non-
dimensionalisation does not happen till the mid-seventies. Possibly the first paper
to do this in a formal way was that by Grigoryan et al. (1976), a paper which is
not often cited because of its impenetrability, occluding the matter as it does with a
heavy shroud of curvilinear coordinates. The basic lubrication approximation which
describes glacier and ice sheet flow was introduced as the ‘shallow ice approxima-
tion’ in my thesis (Fowler 1977) and in print by Fowler and Larson (1978), and this
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phrase is still widely used. Fowler and Larson dealt explicitly with valley glaciers, but
the same small aspect ratio approximation can be used for ice sheets (Morland and
Johnson 1980, Hutter 1983, Morland 1984, Hutter et al. 1986 and Fowler 1992a, of
whom we follow the latter) and ice shelves (Morland and Shoemaker 1982), although
in practice similar approximations had been introduced earlier (Nye 1959, Weertman
1957b).

Waves on glaciers

Both surface and seasonal waves were well known in the nineteenth century. An
early discussion of surface waves is by Finsterwalder (1907), while Deeley and Parr
(1914) provide a discussion of seasonal waves. Between the wars, glaciology enters its
barren period, and the emergence from this is perhaps seeded by Gerald Seligman’s
foundation of the Glaciological Society (first British, later International) in 1936, but
it is only after the war that some of the earlier investigations are revived. Lliboutry, in
particular, was a great advocate of the expertise of the early glaciological researchers.

The modern theory of surface wave motion received its impulse from John Nye’s
stay at CalTech, where a youthful Gerry Whitham had recently developed the the-
ory of kinematic waves (Lighthill and Whitham 1955a,b). This theory was adapted
by Nye (1960, 1963) to the study of linear waves on glaciers; a nonlinear analysis is
given by Fowler and Larson (1980b). A parallel development was reported by Weert-
man (1958). Nye’s theory, based on perturbations of a parallel-sided slab, yields the
unphysical singularity at the snout which was mentioned in section 10.4.1.

Apart from the early work by Deeley and Parr (1914), there has been relatively
little interest in seasonal waves. The main exception to this is the paper by Hodge
(1974). Hewitt and Fowler (2008) provide a mathematical model which can produce
certain of the observed features.

Wave ogives are lucidly discussed by Waddington (1986).

The head and the tail

As mentioned earlier, wave theory for glaciers is confounded by both the head of
the glacier and its snout. To my knowledge, no one has paid any attention to the
modelling issue with the upstream boundary condition, as discussed here in question
10.11. The resolution of the description of the bergschrund33 is likely to involve
steepening bed slopes, and longitudinal stresses which reach the fracture strength of
ice (around 2 bars).

The snout of a glacier is a good deal more accessible. Even so, little attention
has been paid to that either. Nye and Lliboutry had a little engagement34 about this
in the 1950s (Lliboutry 1956, Nye 1957, Lliboutry 1958b, Nye 1958), and chapter 6

33The crevasse which marks the head of the glacier, where the ice separates from the stagnant
apron of snow and ice above it.

34Or perhaps a spat; Nye’s opening sentence in his 1958 note is the wonderful comment: “In so
far as Professor Lliboutry is trying to make the theory of glacier flow more realistic one can only
wish him well and hope that he is on the right track.”
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of my thesis (Fowler 1977) uses the method of strained coordinates to calculate the
finite slope at the front. This involves inclusion of the longitudinal stresses, in much
the same way as in question 10.11. If these are ignored, then the solution of the
isothermal equation has infinite snout slope if it is stationary or advancing, much as
for (10.117); see also question 10.12.

Boulton and Hindmarsh’s (1987) seven data points of basal shear stress, effective
pressure and till strain rate were presumably gleaned from observations near the
glacier snout. The original data was never published, so that one can only guess
how the values of shear stress were computed. In the absence of a local analysis of
behaviour near the snout, such values are tantamount to guesswork.

Surges

Surging glaciers are located in various places round the world, including Alaska and
Svalbard. Famously, there are no surging glaciers in the European Alps, but it is
thought that there used to be at least one, Vernagtferner, in the Austrian Alps,
which last surged in about 1900.35 Early paintings, documented by Nicolussi (1990)
indicate surges occurring in about 1600 and 1680, to judge from the jagged surface of
the glacier in the images, and further surges occurred in 1772, 1844, and the small,
perhaps final one in 1898. Apart from the last of these, the ice advanced to block the
outlet stream from Hintereisferner, causing an ice-dammed lake to form, which burst
through the ice, sometimes more than once, sending a flood wave down the valley to
the village of Vent.

The surge on Variegated Glacier is discussed by Kamb et al. (1985), and theoretical
descriptions are given by Kamb (1987) and Fowler (1987a). The present discussion
is based on this latter paper, the mathematical details of which are worked out in
Fowler (1989). Observations of Trapridge Glacier are described by Clarke et al. (1984)
and Frappé-Sénéclauze and Clarke (2007). The issue of the Journal of Geophysical
Research in which Fowler’s (1987a) article appears is a collection of articles on fast
glacier flow, including both ice streams, surging glaciers, and tidewater glaciers.

Streams, shelves, sheets

The dynamics of ice streams are reviewed by Bentley (1987), see also Engelhardt et
al. (1990), while the theory of Hudson Strait mega-surges is due to MacAyeal (1993).
Heinrich events are discussed by Bond et al. (1992), while the discussion here is based
on a paper by Fowler and Johnson (1995). The recent acceleration of Jakobshavn
Isbrae in West Greenland is described by Holland et al. (2008).

The discussion of approximate temperature profiles follows that in Fowler (1992a);
the profiles shown in figure 10.7 are reminiscent of those shown in Paterson’s (1994)
book, and are also similar to the computed profiles of Dahl-Jensen (1989). The
concept of thermally induced instability was enunciated by Robin (1955) and taken
up by Clarke et al. (1977) and Yuen and Schubert (1979), but more or less scotched by

35See http://www.lrz.de/∼a2901ad/webserver/webdata/vernagt/vernagt E.html.
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Fowler and Larson (1980a), at least in the context of two-dimensional flows; see also
Fowler et al. (2009). However, Hindmarsh (2009) has shown that thermally induced
instabilities do occur in three dimensions, and are capable of forming ice stream-like
features.

The basic approximation for the analysis of ice shelves was done by Weertman
(1957b). A general scaling analysis is given by Morland and Shoemaker (1982).
Typical values of sub-ice shelf melt rates are given by Holland et al. (2003), for
example.

The mechanics of ice streams are thoroughly described by Van der Veen (1999).
The shear stress on the Siple coast ice streams, particularly the Whillans ice stream,
is small, of order 0.1–0.2 bars, but Kamb’s (1991) laboratory tests indicated that the
yield stress for the basal marine sediments is an order of magnitude smaller. If one
supposes that the rheology of till is such that the yield stress cannot be exceeded
without allowing rapid acceleration, then the presence of stable ice streams indicates
that the driving stress is taken up elsewhere, most likely by lateral shear, and this is
consistent with transverse velocity profiles, as shown by Van der Veen (figure 12.10),
and as discussed in section 10.3.4.

The use of longitudinal stresses in producing the membrane stress approximation
is due to MacAyeal (1989). The version we present here is similar to that presented
by Blatter (1995), and perhaps more in the style of Schoof and Hindmarsh (2010).
Bueler and Brown (2009) present a related model, although they partition the ice
velocity in an arbitrary way between shearing and sliding.

The mechanism whereby ice streams form is less clear, although some kind of
spatial instability is the likely cause. As alluded to above, Hindmarsh (2009) showed,
following earlier work by Payne and Dongelmans (1997), that thermal instability was
a possible cause; Sayag and Tziperman (2008), following Fowler and Johnson (1996),
suggested that a water-mediated feedback could also provide a mechanism.

Grounding line

The possible collapse of the West Antarctic Ice Sheet was discussed by Hughes (1973),
and Weertman (1974) gave the first theoretical discussion of grounding line stability.
Subsequent authors who discuss the issue include Thomas (1979) and Hindmarsh
(1993); the latter advocated a concept of neutral equilibrium for grounding line posi-
tion.

The issue of the extra condition which describes the position of the grounding line
is a thorny one, which is as yet not completely resolved. At a formal level, the most
detailed studies are those of Wilchinsky (Chugunov and Wilchinsky 1996, Wilchin-
sky and Chugunov 2000, 2001), but these papers are severely impenetrable, even
to initiates. Wilchinsky (2007, 2009) adds further comments to his earlier analysis.
Chugunov and Wilchinsky (1996) consider the transition zone in a similar manner
to that presented here. They assume Newtonian flow and a steady state, and claim
to deduce the grounding line position. Two key assumptions are apparent in their
reasoning. The first is the arbitrary assumption that the horizontal length scale for
the ice shelf is comparable to that for the ice sheet. This allows them to deduce that
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(with present notation) HG = β(ε/δ)1/3 for some O(1) coefficient β (not the same β
as in 10.2.7); the origin of this (correct) scale is, however, mysterious. The deduction
of a numerical value of β ≈ 1.5 from a numerical calculation appears to involve (in
the appendix to the paper) the assumption that the bed B(X) (in present notation)
is smooth, i. e., B′(0) = 0. This assumption appears to be arbitrary, though reason-
able. Wilchinsky and Chugunov (2000) extend this analysis to the junction between a
rapidly moving ice stream, where shear is less important, and an ice shelf. They now
state that the grounding line position is determined by the requirement of continuity
of the lower ice surface at the grounding line, but they do not carry through the calcu-
lation. The scaling analysis involved is rather different than for the shear-dominated
sheet/shelf transition. Finally, Wilchinsky and Chugunov (2001) extend the scaling
of the 1996 paper to the nonlinear rheology of Glen’s law. The flow is still steady,
and it is stated that the condition B(0+) = 0 determines the grounding line position,
and that the flux at the grounding line is, in present notation,

qG =

(
βε

δ

)n

Hn+2
G ; (10.472)

this can be compared with (10.162). Numerical evaluation of β is again only done for
the Newtonian case n = 1, under the additional assumptions of BX = BXX = 0 at
X = 0+. Like its predecessors, this paper is hard to fathom.

More recently, the transition problem has been studied numerically by Nowicki
and Wingham (2008), and it is here that the rôle of contact conditions has been em-
phasised. They studied the transition problem described in section 10.2.7, assuming
ẋG = 0, and for a range of incoming mass fluxes—essentially a range of values of Λ.
They also allowed sliding, so that on the grounded base X < 0, the sliding velocity is

U = kT3, (10.473)

which replaces the second condition in (10.153). In general, solutions are obtained
for any value of Λ, but in general the (scaled) normal effective stress B + Π+ T1 on
the grounded ice is singular at X = 0, tending to either ∞ or −∞ as X → 0−. In
addition, one finds BX(0) > 0 if B+Π+T1 → −∞, and BX(0) < 0 if B+Π+T1 →∞.
Consequently, none of these solutions are admissible. For each k > 0 there is precisely
one value of Λ for which the contact conditions (10.175) and (10.176) are satisfied,
and for this value also BX(0) = 0, which can also be deduced from (10.166), which
implies that

B + Π+ T1 = − 2T1B2
X

1−B2
X

(10.474)

on Z = B, X > 0.
These results have not yet been extended to the non-stationary case ẋG .= 0, or

to the no slip case k = 0. The difficulty in the latter case appears to be associated
with the greater numerical difficulty encountered in dealing with the more severe
singularity which will occur in that case (cf. Barcilon and MacAyeal 1993). Durand
et al. (2009) have used the same contact conditions in a full numerical ice sheet model
in which ẋG .= 0, with encouraging results.
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The limit k →∞ in (10.473) corresponds to the case of sliding dominated flow as
in an ice stream, and this limit has been studied directly by Schoof (2007b,c) using
a version of the membrane stress approximation. In order to complete his theory,
he also needs an extra condition, which is taken to be that T1 is continuous. It is
not entirely obvious that this would be a consequence of the contact conditions in
a suitably rescaled version of the finite k theory, although it seems likely. Schoof
(2007c) is able to show directly that the Weertman slope-induced instability does
indeed apply, and we have followed his presentation here.

Sliding

The theory of basal sliding over hard beds stems from Weertman (1957a) and Lli-
boutry (1968). Weertman presented the basic concept of the regelative lubricating
film, and described in order of magnitude fashion how to obtain a sliding law. Lli-
boutry presents more elaborate calculations, and importantly introduces the impor-
tance of basal water. Two reviews of progress by the end of the seventies are by
Lliboutry (1979) and Weertman (1979). The linear theory is primarily due to Nye
(1969, 1970) and Kamb (1970). Morland (1976a,b) introduced complex variable meth-
ods, while the material presented here is based largely on Fowler (1986, 1987b). The
first of these uses complex variable methods to study cavitation over simple periodic
beds, and the second uses a heuristic, Lliboutry-style method to suggest a gener-
alised Weertman model for sliding over non-periodic beds. An up to date theoretical
discussion of sub-glacial cavitation is given by Schoof (2005), who also provides sig-
nificant theoretical advances in the study of sliding over non-periodic beds, indicating
in particular that Fowler’s (1987) theory is flawed, though repairable. His essential
conclusion is that Iken’s (1981) concept of a maximum friction (shear stress divided
by normal effective stress) is valid, even for non-periodic beds, with the maximum
value of the friction being set by the amplitude and slope of the largest bumps.

Weertman’s original model is as follows. Consider a bed consisting of an array of
(cubical) obstacles of dimension a a distance l apart, and suppose the ice flow exerts
an (average) shear stress τ at the bed. The drag on each obstacle is therefore τ l2, and
thus the pressure increase upstream of an obstacle is (approximately) τ l2/2a2, while
the decrease downstream is −τ l2/2a2. The pressure difference causes a temperature
difference (due to the Clapeyron effect) of

δT ≈ Cτl2/a2 (10.475)

where C is the slope of the Clapeyron curve, −dTm/dp = C ≈ 0.0074 K bar−1; Tm

is the melting temperature. Let uR be the regelative ice velocity: then uRa2 is the
regelative water flux. The latent heat required to melt this is ρiLuRa2, where ρi is
ice density and L is latent heat. The heat transfer is effected through the obstacle,
at a rate (kδT/a)a2 = kδTa, where k is the thermal conductivity of the bedrock.
Equating these suggests that

uR =

(
kC

ρiLa

)
τ

ν2
, (10.476)
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where the aspect ratio ν = a/l is a measure of the roughness of the bedrock. Regela-
tion is thus effective at small wavelengths.

On the other hand, let uV be the velocity due to viscous shearing past the obstacle,
with no shear stress at the bed. The differential stress generated is ≈ τ/ν2, and for
a nonlinear (Glen’s) flow law ε̇ = Aτn, the resulting strain rate is ≈ 2A(τ/ν2)n, with
n ≈ 3. Hence we infer

uV ≈ 2aA(τ/ν2)n. (10.477)

It can be argued36 that the stresses should be added, thus

τ = ν2[Rrau + Rv(u/a)1/n], (10.478)

where Rr and Rv are material roughness coefficients, given approximately by

Rr ≈
ρiL

kC
, Rv ≈

(
1

2A

)1/n

. (10.479)

We see that motion past small obstacles occurs mainly by regelation, while motion
past larger obstacles occurs largely by viscous deformation. There is a controlling
obstacle size at which the stresses are comparable, and if we take a as this value, we
obtain the Weertman sliding law

τ ≈ ν2Ru
2

n+1 , (10.480)

where

R =

(
ρiL

2kCA

)1/(n+1)

. (10.481)

Subtemperate sliding

Sometimes modellers who implement sliding laws in their ice sheet computations
assume that the sliding law u = U(τ) applies when the basal temperature T = Tm,
and that u = 0 for T < Tm. This assumption is incorrect (Fowler and Larson 1980a),
and it is more appropriate to allow sliding to increase continuously over a small range
of temperature below the melting point, to reflect the fact that creation of a water
film will occur in a patchy fashion as the melting point is approached (Hindmarsh
and Le Meur 2001, Pattyn et al. 2004).

If one assumes a discontinuous sliding law, then if basal stress is continuous, one
would have an inadmissible discontinuity of velocity: this was the downfall of the
EISMINT ice shelf numerical modelling experiments in the 1990s. If the velocity is to
be continuous, then stresses must be discontinuous and in fact singular (Hutter and
Olunloyo 1980). It has indeed been suggested that such stress concentrations may
have a bearing on thrust faults in glaciers (e. g., Kleman and Hättestrand 1999), but
the theoretical basis for supposing they exist is dubious.

We can derive a sliding law in a Weertman-like way for basal temperatures below
Tm as follows. Again we suppose that bumps of size a are spaced a distance l apart.

36Weertman added the velocities instead.
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Now we suppose that the basal temperature is at a temperature Tb < Tm, and we
define the undercooling to be

∆T = Tm − Tb. (10.482)

It is no longer appropriate to conceive of the water film covering the bed between the
bumps, and so there is an additional component to the stress due to stick-slip friction.
We will ignore this here, and suppose that as before the resistance comes primarily
from the film-assisted flow over the bumps. Because the ice is below the pressure
melting point, there is an additional conductive heat flow away from the bumps given

approximately by
k∆T

l
, and therefore (10.476) is replaced, using (10.479), by

RrauR =
τ

ν2
− ν∆T

C
, (10.483)

and (10.478) is replaced by

τ = ν2

[
Rrau + Rv

(u

a

)1/n

+
ν∆T

C

]
, (10.484)

which shows that for fixed τ , u decreases to zero continuously as ∆T increases to a
temperature ∆Tmax given by

∆Tmax =
Cτ

ν3
. (10.485)

For τ = 0.1 bar and ν = 0.1, this is ≈ 1◦ K.

The rheology of till

Although glacial geologists were aware of the widespread occurrence of subglacial
drift, or subglacial till, the early theoretical studies of sliding focussed on sliding over
hard beds. An abrupt shift in this view occurred on the publication of the bench-
mark paper by Boulton and Hindmarsh (1987), which focussed attention on the basal
motion of ice due to deformation of the subglacial till. In particular, Boulton and
Hindmarsh described possible viscous-type rheologies for till based on reported mea-
surements on a subglacial till below an Icelandic glacier. Unfortunately, the original
data from which the shear stresses were inferred are unavailable, and thus the exper-
imental basis for the viscous rheology is uncertain. When laboratory measurements
of subglacial till properties are made, it has been largely found that till behaves as
a plastic material, having a yield stress which when reached allows indefinite strain
(Kamb 1991, Hooke et al. 1997, Iverson et al. 1997, Tulaczyk et al. 2000, Rathbun et
al. 2008, Altuhafi et al. 2009). This is to be expected, since till is a granular material.
Ignoring cohesion, we would then have a prescription for basal shear stress in the
form

τ = µN, (10.486)

where µ is a suitable coefficient of friction and N is effective pressure. Lliboutry
suggested such a sliding law in his 1968 paper.
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However, the story is more complicated than this. The rheology of a plastic
material comprises the prescription of a yield stress surface (for example, the Von
Mises yield stress surface τijτij = 2τ 2

c ) together with a flow law. The simplest such flow
law allows a strain rate proportional to stress, so that the actual rheology would be
that of a viscous material, where the effective viscosity is determined by the necessity
to remain on the yield surface. In addition, purely geometrical considerations suggest
that, in order to shear a granular material at all, a normal stress must be induced in
order that the grains can move round each other. The generation of normal stresses
by shear flows is a property of viscoelastic materials, and suggests that the issue of
till rheology is not a simple one. The consequent dilation of the till in shear induces
a reduction of pore pressure, and consequent hardening (Moore and Iverson 2002).
In addition, deformation of granular materials often occurs through the formation of
shear bands (Li and Richmond 1997, François et al. 2002), whose presence complicates
the determination of an effective till rheology. Fowler (2003) discusses some of these
issues further.

Drainage

Water is abundant under glaciers and ice sheets, and it seems usually to be the case
that subglacial water cannot be evacuated through the bed, so that a subglacial hy-
draulic system must exist. The classical theory of drainage through channels incised
upwards into the ice is due to Röthlisberger (1972), while the time-dependent devel-
opment of this theory for jökulhlaups is due to Nye (1976). The ice-incised channels
are called Röthlisberger, or simply R, channels, but channels cut down into underly-
ing bedrock have been observed, and are termed Nye channels, following Nye (1973).
Weertman (1972) preferred a distributed water film, although Walder (1982) showed
that such a film is unstable (indeed, it is this instability which is responsible for the
formation of R channels in the first place). However, the concept of a patchy film
is more tenable (Alley 1989), particularly if allied to the concept that the ice-till
interface can itself evolve; more on this below.

Linked cavities were first implicitly described by Lliboutry (1968), and were ob-
served in deglaciated beds by Walder and Hallet (1979). Kamb et al. (1985) and
Walder (1986) developed theoretical descriptions for the consequent hydraulic régime.
While linked cavities are generally (though not necessarily, see below) associated with
flow over hard beds, a similar sort of system of distributed canals was invoked by
Walder and Fowler (1994) to describe channelled flow over soft till beds. For field
measurements of subglacial hydrological systems, see Hodge (1974), Hubbard et al.
(1995), Nienow et al. (1998) and Fudge et al. (2008). A recent review of subglacial
processes of current interest is by Clarke (2005).

727



Drumlins

The word ‘drumlin’ apparently derives from the Irish, and means ‘small hill’. The
word appears to have first been published in the paper by Bryce (1833)37, and is in
common scientific usage by the time of Kinahan and Close (1872), although the study
of such bedforms was also described much earlier by Hall (1815), who was concerned
with crag-and-tail features in Scotland (perhaps the best known being the Royal Mile
in Edinburgh, a ridge of drift which lies in the lee of the volcanic outcrop of Edinburgh
Castle). There are two interesting things about Hall’s paper. First, it appears before
Agassiz’s glacial theory (as does Bryce’s), and thus ascribes crag-and-tail features
to the biblical flood. Hall and Bryce had no knowledge of ice ages. The second
interesting thing is that a modern edition of Hall’s biblical theory has reappeared in
the flood hypothesis of John Shaw (e. g., Shaw 1983, Shaw et al. 1989). Shaw’s ideas
are largely derided, but are vigorously supported by a number of scientists.

So we need to explain Shaw’s hypothesis and its reception rather carefully (see
also the discussion in section 11.8). Essentially, his idea is that massive subglacial
meltwater floods cause the formation of drumlins, and the apparent motivation for
this idea is that only the turbulent flow of water can erode such bedforms: ice is too
slow. This conceit is evidently misguided, but its application requires him to produce
massive subglacial floods below ice sheets. The twist in the story (see chapter 11) is
that such floods now seem likely to have occurred, but the basic difficulty with the
Shaw theory remains: he needs floods to be everywhere, of incomprehensible volume,
and to produce bedforms which do not actually look fluvial: a tall order.

In my view, one can be fairly circumspect about the matter. Shaw’s theory, in
any of its forms, is not in fact a theory: it does not provide a mechanistic process to
produce the observations. A suitable point of discussion is his 1983 paper. Inspired by
his mentor’s monumental book masquerading as a paper (Allen 1971), Shaw provides
a very persuasive analogy between between some erosional marks, such as the cave
scallops described by Allen, and the resulting inverted casts under ice sheets, which

37The paper is not so easy to find. The reference in Drozdowski (1986) which most likely follows
that of Menzies (1984) is marginally incorrect (it is the Journal of the Geological Society of Dublin,
not of the Royal Geological Society of Dublin, and this makes a difference, since the journal subse-
quently changed its name to the Journal of the Royal Geological Society of Ireland). Copies of the
original journal can be found in the National Library of Ireland (Kildare St., Dublin, call number
IR5541g1), as well as in the library of the Royal Dublin Society in Ballsbridge. Bryce did not coin
the word; he says the following: “The gravel hills, on the other hand, have an elongated form, are
generally steepest towards one side, and rise in every other direction by much more gentle acclivities.
This peculiar form is so striking that the peasantry have appropriated an expressive name to such
ridges . . . the names Drum and Drumlin (Dorsum) have been applied to such hills . . . .” Why the
Latin word Dorsum (meaning back, but also ridge) is included in parenthesis is not clear. Bryce’s
paper largely concerns the constituents of the till which constitute the drumlins of northern Ireland,
from which he infers that motion was largely from the north west. He also provides what may be
the first description of ribbed moraine, and deduces in effect that Belfast Lough, Lough Neagh and
Lough Foyle were formed during the ice ages. Earlier uses cited in the Oxford English Dictionary
are by Innes (1732) and Sinclair (1791–1799; particularly volume IX, pp. 131, 262–263 and volume
XIX, pp. 342–344, 369), but it seems that the dryms of Innes on the shores of Lough Foyle in Ireland
are in fact fossil dunes, while the drums of Sinclair near Blairgowrie in Perthshire, Scotland, are
interfluves of former meltwater channels.
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result as drumlins. Nothing wrong with the idea. But it is not a theory. To be a
theory, it needs, for example, a predictive wavelength for scallops. Scallop formation
is an interesting problem (Blumberg and Curl 1974), but is basically unsolved. One
can thus criticise Shaw’s ideas either on the basis that their fundamental environment
is invented (massive floods), or on the basis that nothing is actually predicted. But
at the same time, we have to be aware as scientists, that we must try to avoid
dogmatic reaction associated with paucity of imagination, because we know that this
has littered our scientific history. Consider, for example, the receptions accorded to
Wegener (chapter 8) and Bretz (chapter 11).

The development of the theory of drumlins over the nineteenth and twentieth
centuries is in a similar parlous state. Although the literature describes the debate
between the ‘erosional’ and ‘depositional’ theories, there is really no theory that de-
serves the name until Hindmarsh’s landmark paper (Hindmarsh 1998), which is the
first time that the word ‘instability’ makes an appearance, and in which an instabil-
ity theory is proposed. Hindmarsh showed numerically that instability could occur,
and essentially the same theory was solved analytically by Fowler (2000). The the-
ory is developed further by Schoof (2007a), who revisits the same stability theory
and extends it in various ways. He does, however, draw a cloud over proceedings:
‘Hindmarsh and Fowler’s theory does not reproduce a number of known features of
drumlins’; and in his conclusions, he draws attention to certain apparent problems
with the theory: the problems of three-dimensionality, the issue of stratified drumlin
cores, the problem of amplitude. Gloomily, he thinks there is a ‘tenuous link between
the model and the origin of drumlins’. His gloom is misplaced. There is no other
tenable theory in existence, and there is nothing as yet which rules it out. While the
problem is certainly hard, it is likely that a clear theoretical framework will emerge
over the next decade or two. In his recent book, Pelletier (2008) follows Schoof’s view,
and proposes a model based, bizarrely, on a compaction model for magma transport,
with little connection to the physical processes involved, although he is able to pro-
duce interesting looking patterns—much like his theory of the spiral canyons on the
Martian north polar ice cap (see below).

Eskers

The Irish eskers were perhaps first described scientifically by Close (1867), and later
by Flint (1930). General descriptions are given by Embleton and King (1968) and
Sugden and John (1976). More up to date discussions are those by Shreve (1985) and
Warren and Ashley (1994). Clark and Walder (1994) noted that in the Laurentide
ice sheet, the former central part, the Canadian Shield, is essentially wiped clean of
sediment, which has piled up in the outer parts of the former ice sheet. And eskers
are found in the Shield but not beyond it. Clark and Walder inferred the obvious
conclusion, that Röthlisberger channels (hence the eskers) are the drainage pattern
on the (hard) Shield, while their absence on the sediment-covered margins indicates
a canal-type drainage. We will come back to this observation in chapter 11.

In our discussion of the various drainage systems which exist beneath a glacier, we
have always been thinking of an isolated set of channels, or linked cavities, or canals,

729



which somehow exist independently of the overlying ice and underlying sediments or
bedrock. Finally, as we contemplate the construction of drumlins and eskers, we may
come to realise that this separatist view is misguided. In our simple theory of drumlin
formation, we imagine a drainage system which moves water through the landscape
without interacting with it. But this is unrealistic: the development of ridges will
pond water and alter drainage paths. What we need to do is to allow the drainage
system to interact with the bedforms.

We might then ask ourselves, what actually is the difference between a lee-side
cavity and a subglacial stream? And the answer, at least from the point of a sensible
model, is none. A fully integrated model for ice, water and sediment (or rock) allows
for parts of the bed where effective pressure N > 0 and the ice is attached, i. e., the
water layer thickness h = 0, and parts of the bed where the ice flow is separated
(h > 0), and where N = 0. In this view a cavity is the same as a stream, the precise
geometrical distinction between them being simply one of degree. A model of this
type has recently appeared (Fowler 2010), although its numerical solution has yet to
be attempted.

Glaciology on Mars

The theory of dust–albedo feedback used in the description of the possible mechanism
for the formation of the spiral troughs on the Martian polar ice caps was advanced
by Howard (1978), although mathematical efforts to establish a theory had to await
the models of Pelletier (2004) and Ng and Zuber (2003, 2006). Pelletier’s model is
essentially equivalent to the Fitzhugh-Nagumo equations, which are known to produce
spiral waves, but appears to have been constructed with a view to obtaining the waves
he sought. While the resulting numerical solutions which he found are suggestive,
there is no coherent physical basis for the model. Ng and Zuber’s model is more
clearly based on Howard’s idea, and uses Ivanov and Muhleman’s (2000) description
of radiative transport as its basis. Our description is largely based on Ng and Zuber’s
work, although we diverge in our development of the model and its conclusion: see
Zammett and Fowler (2010).

Exercises

10.1 The downstream velocity u over the cross section S of a glacier is given by

∇.[η{A, |∇u|}∇u] = −1 in S,

where the viscosity is given by

η = A−1/n|∇u|−(n−1)/n.

Assuming the rate factor A = 1 and a semi-circular profile for the ice cross
section S. Give suitable boundary conditions for the flow, and hence derive the
solution. Deduce the ice flux Q as a function of the cross sectional area of the
flow.
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10.2 Use lubrication theory to derive an approximate model for two-dimensional flow
of a valley glacier, assuming Glen’s flow law with a rate constant independent
of temperature, and no sliding at the base. Non-dimensionalise the model, and
show that for typical lengths of 10 km, accumulation rates of 1 m y−1, and if
the rate constant in Glen’s law is 0.2 bar−3 y−1 (with the Glen exponent being
n = 3), a typical glacier depth is 100 m. Show that the dimensionless model
depends on the single dimensionless parameter µ = d cot α/l, where d is the
depth scale, l is the length scale, and α is the valley slope. What are typical
values of µ?

Show that if µ ' 1, the model takes the form of a first order hyperbolic wave
equation. Write down the solution for small perturbations to the steady state,
and show that the perturbations grow unboundedly near the glacier snout. Why
is this? Write an alternative linearisation which allows a bounded solution to
be obtained.

More generally, an exact characteristic solution of the model allows shocks to
form (and thus for the glacier snout to advance). Discuss the rôle of µ in shock
formation.

10.3 A glacier is subject to an accumulation rate a whose amplitude varies sinu-
soidally in time about a mean (space dependent) value; specifically

a = a0(x) + a1e
iωt,

where a1 is constant (the real part may be assumed). Use an appropriate
linearised wave theory to determine the resultant form of the perturbed surface.
What can you say about the effect of millennial scale climate changes? About
annual balance changes?

How would you generalise your result to a general time dependent amplitude
variation?

10.4 Write down the equations governing three-dimensional flow of an ice sheet, and
show how they can be non-dimensionalised to obtain

Ht = ∇.

[{
|∇s|n−1Hn+2

n + 2
∇s

}
−Hub

]
+ a,

assuming Glen’s flow law and a temperature independent rate coefficient. Show
that the dimensionless basal shear stress is τ = −H∇s.

10.5 An ice sheet in steady state has profile z = s(x, y) and horizontal velocity
u = (u, v) independent of depth, with u = −K∇s, for some scalar K. Suppose
that χ is a coordinate anti-clockwise along level s contours, and that U is
a function such that u = Uχy, v = −Uχx, and which satisfies (in terms of
independent coordinates s, χ)

∂

∂s

(
U

|u|

)
= − 1

|∇s|
∂θ

∂χ
,

731



where θ = tan−1
(v

u

)
.

If σ measures arc length on a level s contour C(s), show that

U dχ

|u| = dσ

on C. Show also that

∮

C(s)

dθ = 2π. Show that distance ξ along a flow line

satisfies dξ = − ds

|∇s| , and deduce that

∂

∂ξ

(
U

|u|

)
=

∂θ

∂χ
.

Show that integration of this equation round a closed contour C(s) appears to

imply that
∂L(s)

∂ξ
= 2π, where L(s) =

∮

C

dσ is the circumferential length of C.

This is incorrect: why?

Show that a correct inference is that

−dL

ds
=

∮

C

dθ

|∇s| ,

and show that this equation can be deduced on purely geometrical grounds.

The ice sheet profile satisfies the equation

∇. (su) = a,

where we suppose a(x, y) > 0. By using s and χ as independent coordinates,
show that

∂(sU)

∂s
= − a

J
,

where J = −∂(s, χ)

∂(x, y)
is the Jacobian of the transformation from (x, y) to (−s, χ).

Explain why J > 0 away from the ice sheet summit, and deduce that sU is a
monotone increasing function of ξ along a flow path.

10.6 Suppose that an ice sheet has the symmetric profile s = 1 − r2, where r is
the polar radius from the centre. The curvature of the level s contours is thus

κ =
1

r
, and the distance along a steepest descent path is r. The temperature

away from the bed is given by

T = f(zU),

where

U = u exp

[∫ r

κ dr

]
,
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and u(r) is the radial outwards plug flow velocity of the ice; the ice depth is
related to the accumulation rate a(r) by

1

r

∂

∂r
(rsu) = a.

Show that rsu = B, where B =

∫ r

0

ra dr, and thus that U =
B

s
, and deduce

that

T = f

(
Bz

s

)
.

For the particular case where a = 1 and the surface temperature is Ts = −Γs,
show that the interior temperature is given by

T = −Γ

[
1− r2z

s

]
.

(This temperature decreases with increasing depth, a typical result of the advec-
tion of cold inland surface ice below warmer coastal ice. Such profiles are seen
in measured temperature profiles, but with an inversion near the base where the
geothermal heat flux causes the basal ice to become warmer.)

10.7 The averaged (dimensional) horizontal force balance at the calving front of an
ice shelf can be written in the form

∫ s

b

σ11 dz = −
∫ 0

b

pw dz − pas,

where pw is the (hydrostatic) water pressure, pa is atmospheric pressure, and
z = s and z = b are the positions of the ice top surface and bottom surface
relative to sea level at z = 0. Show that, when written in terms of the ice sheet
scales, this condition takes the form

(1 + δ)b2

2
− (s− b)2

2
+ ε2

∫ s

b

(−p + τ1) dz = 0,

where δ = (ρw − ρi)/ρi. Hence show that in terms of the ice shelf scales, the
condition can be written in the form

b2 − δs2 + 2sb + 4τ1(δs− b) = 0,

assuming the approximate results −p ≈ τ1 = τ1(x, t). Taking s ≈ −b, show
that the vertically averaged deviatoric longitudinal stress at the calving front is

τ̄1 = −1
4b,

and if this is taken as the boundary condition for the ice shelf stress τ1, show
that (by solving (10.141)2)

τ1 = −1
4b

everywhere.
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10.8 Suppose that
Ht = −qx + a,

q = −D(H,Hx)Hx,

where a is constant, and the boundary conditions are

q = 0 at x = 0,

q = qG(xG), H = HG(xG) at x = xG.

If the steady state solution is denoted with a suffix or superscript zero, show,
by writing H = H0(x) + η, q = q0(x) + Q, and xG = x0

G + γ, that the linearised
system for the perturbation can be written in the form

ηt = −Qx,

Q = −p̄ηx − q̄η,

Q = 0 at x = 0.

Q = Kη at x = x0
G,

where

K =
q′G(x0

G)− q′0(x
0
G)

H ′
G(x0

G)−H ′
0(x

0
G)

, p̄ = D0 + DH′H ′′
0 , q̄ = DHH ′

0,

and

DH′ =
∂D

∂Hx
, DH =

∂D

∂H
,

the derivatives being evaluated at the steady state. Note that

p̄ = − ∂q

∂Hx
> 0, q̄ = − ∂q

∂H
< 0.

Show that solutions exist in the form η = y(x)eσt, and show that the equation
for y can be written in Sturm-Liouville form

(py′)′ + (s− σr)y = 0,

where primes denote differentiation with respect to x,

p = p̄r, r = exp

(∫ x

0

q̄ dx

p̄

)
, s = rq̄′.

Deduce that there exists a denumerable, decreasing sequence of eigenvalues σ,
and that for the maximum of these, σ1, the corresponding eigenfunction y1 is
of one sign (say positive).

Show that

σ1

∫ x0
G

0

y1 dx = −Ky1(x
0
G),

and deduce that the steady state is unstable if and only if K < 0.
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10.9 The drainage pressure in a subglacial channel is determined by the Röthlisberger
equations

ρwg sin αc =
f1Q2

S8/3
,

mL = ρwgQ sin αc,
m

ρi
= KSNn.

Explain the meaning of these equations, and use them to express the effective
pressure N in terms of the water flux Q. Find a typical value of N , if Q ∼ 1
m3 s−1, and sin αc ∼ 0.1, f1 = fρwg, f = 0.05 m−2/3 s2, n = 3, L = 3.3× 105 J
kg−1 and K = 0.1 bar−3 y−1.

Use a stability argument to explain why Röthlisberger channels can be expected
to form an arterial network.

10.10 Drainage through a linked cavity system relates the effective pressure NK to
the water flux Q by the implicit relation

NKeS(Λ) = δNR(Q),

where S = S ′Λ, (S ′ constant), Λ =
u

Nn
K

, δ < 1 and

NR(Q) = βQ1/4n,

with n = 3. Explain why this drainage system should be stable if N ′
K(Q) < 0.

Show that

−N ′
K

NK
(nΛS ′ − 1) =

N ′
R

NR
,

and deduce that linked cavity drainage is stable for Λ > Λc ≡
1

nS ′ .

10.11 A correction for the basal shear stress near the head of a glacier which allows
for longitudinal stress is

τ = H(1−HX) + γ
(
H|uX |

1
n−1uX

)

X
,

where u is the velocity (assumed to be a plug flow), X is distance from the
head, and γ is small. Assume that near the head of the glacier, conservation of
mass takes the form

Hu = X,

and the sliding law is of the Weertman type

τ = ur,

where 0 < r < 1.
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We wish to apply the boundary conditions

H = 0 at X = 0,

H ∼ X
r

r+1 as X →∞.

Consider first an outer approximation in which the term in γ is ignored. Show
that there is a unique value of H(0) = H0 > 0 such that the boundary condition
at ∞ can be satisfied.

Now suppose n = 1. Show, by writing first X = eξ and then ξ = γΞ, that there
is a boundary layer, in which H changes from 0 at X = 0 to H0 as X increases,
and show that H ∼ XH2

0/2γ as X → 0.

Carry through the analysis when n .= 1, and show that in this case H ∼
X(H2

0/2γ)n
as X → 0.

Do these solutions make physical sense?

10.12 The depth H of an isothermal glacier satisfies the equation

Ht +
∂

∂x

[
(1− µHx)

n Hn+2

n + 2

]
= a,

and H = 0 at the snout xs(t). Assuming that as = a(xs) < 0 at x = xs, show,
by consideration of the local behaviour of H, that if the glacier is advancing,
ẋs = v+ > 0, then

H ∼ A+ (xs − x)
n

n+1 ,

and determine A+ in terms of v+. If the glacier is retreating, ẋs = −v− < 0,
show that

H ∼ A−(xs − x),

and determine A− in terms of v−.

Finally show that in the steady state,

H ∼ A0 (xs − x)1/2 ,

and determine A0.

10.13 The relation between ice volume flux and depth for a surging glacier is found
to be a multivalued function, consisting of two monotonically increasing parts,
from (0, 0) to (H+, Q+) and from (H−, Q−) to (∞,∞) in (H,Q) space, where
H+ > H− and Q+ > Q−, with a branch which joins (H−, Q−) to (H+, Q+).
Explain how such a flux law can be used to explain glacier surges if the balance
function s(x) satisfies max s > Q+, and give a rough estimate for the surge
period.

What happens if max s < Q−? max s ∈ (Q−, Q+)?
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10.14 The depth h and velocity u of an ice sheet fan are given by the thermo-hydraulic
sliding law

h =
fur

[G + Rhu− au1/2]m
,

where r = 1
3 , m = 1

9 , G = 0.06 W m−2, R = 3× 10−7 W m−4 y, a = 0.8× 10−2

W m−5/2 y1/2, and f = 126 W1/9 m4/9 y1/3. Assuming hu ∼ Qi ≈ 5 × 105 m2

y−1, show how to non-dimensionalise the equation to the form

h =
φur

[Γ + hu− u1/2]m
,

and give the definitions of the dimensionless parameters φ and Γ. Using the
values above, show that Γ ≈ 0.4, φ ≈ 0.77.

Define v = u1/2, and show that

L ≡ Γ− v + hv2 =
( v

v∗

)2r/m

≡ R,

where

v∗(h) =

(
h

φ

)3/2

.

By considering the intersections of the graphs of L and R, show that multiple
steady states are possible for sufficiently small h. Using the observation that
2r

m
= 6 is large, show explicitly that if h <∼

1

4Γ
, then there is a solution v ≈ v∗

for v∗ < v−, v ≈ v− for v∗ > v−, and if in addition v∗ > v+, there are a further
two roots v ≈ v+, v∗, where v± are the two roots for v of L = 0. Show also that

if h >∼
1

4Γ
, then there is a unique solution v ≈ v∗.

By consideration of the graphs of v∗(h) and v±(h) (hint: for the latter, first draw
the graph of L = 0 for h as a function of v), show that multiple solutions exist
for sufficiently small φ, and by finding when the graph of v∗ goes through the
nose of the v± curve, show that multiple steady states exist in the approximate
range

φ <φ c =
1

28/3Γ5/3
,

and find the value of φc.

Show that if φ <φ c and hu = q is prescribed, there is a unique solution, but
that there is a range q− < q < q+ where such a solution is unstable (as it lies
on the negatively sloping part of the u versus h curve). What do you think
happens if q lies in this intermediate range?

10.15 The depth of a glacier satisfies the equation

Ht +
∂

∂x

[
(1− µHx)

n Hn+2

n + 2

]
= B′(x),
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where µ ' 1. Suppose first that µ ' 1, so that the diffusion term can be
neglected. Write down the characteristic solution for an arbitrary initial depth
profile. What is the criterion on the initial profile which determines whether
shocks will form?

Now suppose B =
1

n + 2
is constant, so that a uniform steady state is possible.

Describe the evolution of a perturbation consisting of a uniform increase in
depth between x = 0 and x = 1, and draw the characteristic diagram.

Shock structure. By allowing µ .= 0, the shock structure is described by the local
rescaling x = xs(t)+µX. Derive the resulting leading order equation for H, and
find a first integral satisfying the boundary conditions H → H± as X → ±∞,
where H− > H+ are the values behind and ahead of the shock. Deduce that
the shock speed is

ẋs =
[Hn+2]+−

[H]+−
,

and that φ = H/H+ satisfies the equation

φξ = −[g(φ)1/n − 1],

where ξ = X/H+, φ→ r as ξ → −∞, φ→ 1 as ξ → ∞, and

g(φ) =
(rn+2 − 1)(φ− 1) + (r − 1)

(r − 1)φn+2
,

with r = H−/H+ > 1. Show that g(1) = g(r) = 1, and that g(φ) > 1 for
1 < φ<r , and deduce that a monotonic shock structure solution joining H−
to H+ does indeed exist.

Suppose that δ = ∆H/H+ is small, where ∆H = H−−H+. By putting r = 1+δ
and φ = 1 + δΦ, show that

g = 1 +
δ2(n + 1)(n + 2)

2
Φ(1− Φ) + . . . ,

and deduce that
ΦΞ ≈ −Φ(1− Φ),

where

Ξ =
δ(n + 1)(n + 2)

2n
ξ.

Deduce that the width of the shock structure is of dimensionless order

x− xs ∼
2nµH+

δ(n + 1)(n + 2)
,

or dimensionally
2n

(n + 1)(n + 2)

d2
+

∆d tan α
,
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and that for a glacier of depth 100 m, slope (tanα) 0.1, with n = 3, a wave of
height 10 m has a shock structure of width 3 km. (This is the monoclinal flood
wave for glaciers, analogous to that for rivers discussed in chapter 4.)38

10.16 In deriving the reduced, three-dimensional model for drumlin formation, it is
necessary to compute the three dimensional components of the stress tensor at
the bed. Show that the normal, x-tangential and ‘y-tangential’ vectors at the
bed z = s(x, y, t) are

n =
(−sx,−sy, 1)

(1 + |∇s|2)1/2
, t1 =

(1, 0, sx)

(1 + s2
x)

1/2
, t2 = n×t1 =

(−sxsy, 1 + s2
x, sy)

(1 + |∇s|2)1/2(1 + s2
x)

1/2
,

where ∇s = (sx, sy), and hence show that

−τnn =
2η

[
ux(1− s2

x) + vy(1− s2
y) + sx(uz + wx) + sy(vz + wy)− sxsy(uy + vx)

]

1 + |∇s|2 .

Show also that the horizontal basal shear stress vector (τ1, τ2), where τi = n.τ .ti,
has components

τ1 =
η [(1− s2

x)(uz + wx)− 2sx(ux − wz)− sy(uy + vx)− sxsy(vz + wy)]

(1 + |∇s|2)1/2(1 + s2
x)

1/2
,

τ2 =

η
[
(1 + s2

x − s2
y)(vz + wy)− 2sy{vy(1 + s2

x)− wz − s2
xux}

−sx(uy + vx)(1 + s2
x − s2

y)− 2sxsy(uz + wx)
]

(1 + |∇s|2)(1 + s2
x)

1/2
.

Show also that the two x-tangential and y-tangential components of the basal
velocity are

u1 =
u + wsx

(1 + s2
x)

1/2
, u2 =

−usxsy + v(1 + s2
x) + wsy

(1 + |∇s|2)1/2(1 + s2
x)

1/2
.

Write down the appropriate equations for ice flow, and a suitable matching
condition when l ' dI , where l is the horizontal drumlin length scale, and dI

is the ice sheet depth. By scaling the equations and assuming the aspect ratio
ν ' 1, derive a reduced form of the model as in (10.374)–(10.376).

10.17 A model of two-dimensional ice flow over a deformable bed z = νs is given by
the equations

Πx = ∇2ψz,

Πz = −∇2ψx,

with matching condition

Π→ 0, ψzz → θ, ψx → 0 as z →∞,

38The observation that the smallness of surface slope diffusion is offset by the smallness of surface
amplitude is made, for example, by Gudmundsson (2003) (see paragraph 16).
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and at the base z = νs,

−τnn =
2 [(1− ν2s2

x)ψzx + νsx(ψzz − ψxx)]

1 + ν2s2
x

,

τ =
[(1− ν2s2

x)(ψzz − ψxx)− 4νsxψzx]

1 + ν2s2
x

,

ψz − νψxsx

(1 + ν2s2
x)

1/2
= U(τ, N),

−ψx = ανst + νψzsx,

N = 1 + s + Π− τnn,

q = q(τ, N),

st + qx = 0.

Assuming a basic state ψ = ūz + 1
2θz

2, Π = s = 0, show that by putting
ψ = ūz + 1

2θz
2 + Ψ and linearising the model, Ψ, Π and s satisfy the system

Πx = ∇2Ψz,

Πz = −∇2Ψx,

with
Π, ψzz, ψx → 0 as z →∞,

and
τ̂ = Ψzz −Ψxx,

Ψz = Uτ τ̂ + UNN̂ ,

−Ψx = ανst + νūsx,

N̂ = s + Π + 2(Ψzx + νθsx),

st + qτ τ̂x + qNN̂x = 0

at z = 0, where τ̂ and N̂ denote the perturbations to τ and N .

Show that the solution for Ψ is of the form

Ψ = (a + bz) exp[−kz + ikx + σt],

and hence show that
σ = r − ikc,

where the wave speed is

c =
R[1 + 4ν2αk3R(θ + kū)]

1 + 4ν2α2k4R2
,

where

R =
qN + 2k(qNUτ − UNqτ )

1 + 2kUτ
,
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and the growth rate is

r =
2νk2R[θ + kū− αRk]

1 + 4ν2α2k4R2
.

Deduce that the uniform flow is unstable if R > 0.

10.18 The growth rate of the instability in question 10.17 is given by

r =
2νk2R[θ + kū− αRk]

1 + 4ν2α2k4R2
,

where k is the wave number,

R =
qN + 2k(qNUτ − UNqτ )

1 + 2kUτ
,

and α and ν are small. Show that the maximum value of r will occur when k
is large, and in this case show that we can take

R ≈ R∞ = qN −
UNqτ

Uτ
,

and hence show that the maximum of r occurs when

k = kmax ≈
(

3

4ν2α2R2
∞

)1/4

,

where

r = rmax ≈
33/4ū

25/2α3/2(νR∞)1/2
.

The uniform bed is thus unstable if R∞ > 0. Suppose now that

q =

[
τ

µ
−N

]

+

U(φ),

where φ =
τ

N
, the notation [x]+ denotes max(x, 0), and U = 0 for φ < µ. Show

that R∞ > 0 when φ >µ for any such function U(φ).

10.19 The scaled surface perturbation H and the atmospheric dust concentration C
of the Martian north polar ice cap are taken to satisfy the equations

αHτ − vHξ = −g(C),

Cτ = φg(C) + Cξξ + Λ (HξC)ξ ,

where g(C) = C2(1− C), and the positive constants α, v, φ and Λ are O(1).

If the boundary conditions are taken to be that

H, C → 0 as ξ →∞, C → 1 as ξ → −∞,

show that travelling wave solutions with speed w exist if w > w0, and find a
(numerical) method to determine the value of w0.
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