
Climate downscaling, Reanalysis and Gridded Climate data 

A. Downscaling: 

Downscaling can be applied spatially and temporally. Oftentimes, several downscaling 

methods are combined to obtain climate change information at desired spatial and temporal 

scales. There are two principal ways to combine the information on local conditions with 

large-scale climate projections: 

1. Dynamical: by explicitly including additional data and physical processes in models 

similar to  

GCMs but at a much higher resolution and covering only select portions of the globe. This 

method has numerous advantages but is computationally intensive and requires large volumes 

of data as well as a high level of expertise to implement and interpret results, often beyond 

the capacities of institutions in developing countries. 

2. Statistical: by establishing statistical relationships between large-scale climate features 

that GCMs and local climate characteristics provide. In contrast to the dynamical 

method, the statistical methods are easy to implement and interpret. They require 

minimal computing resources but rely heavily on historical climate observations and the 

assumption that currently observed relationships will carry into the future. However, high 

quality historical records often are not available in developing countries. In most cases, a 

sequence of different methods is needed to obtain results at the desired resolution; 

however, the analysis of select reports presenting changes in climate and/or their impacts 

has shown the following points: 

a. Information on downscaling and the limitations of the results are often not 

appropriately highlighted, leading the user to believe that the results are “true” and 

valid at the resolution presented. Extensive reading of technical documentation is 

often needed to uncover all the steps and assumptions that led to the final results. 

b. Uncertainties inherent in projections and additionally arising from applied 

downscaling are often not presented, quantified, nor discussed, leading the user to 

interpret the numerical results at face value. 

c. Validation of downscaled results (on historical data) is often omitted; comparing 

downscaled results to high-resolution observed information would highlight 

systematic biases and the limitations of results. 

The above deficiencies most frequently result from simple oversight by the authors of the 

report or  



their efforts to make it easy to use. However, they are important, and an expert user may be 

able to detect them and estimate the limitations of the results. The overall diversity of the 

approaches and methods in existing reports and publications reflects the diversity of the goals 

and resources of each assessment. Thus, there is no single best downscaling approach, and 

downscaling methods will depend on the desired spatial and temporal resolution of outputs 

and the climate characteristics of the highest impact of interest. In light of current approaches 

and practices reviewed in this report, it is possible to make the recommendations that follow. 

B. UNCERTAINTY 

Confidence in global-scale GCM projections is based on well-understood physical processes 

and laws, the ability of GCMs to accurately simulate past climate, and the agreement in 

results across models (Daniels et al., 2012). Multiple model comparisons unanimously project 

warming of globally averaged near-surface temperature over the next two decades in 

response to increased greenhouse gas emissions. However, the magnitude of this increase 

varies from one model to another. Additionally, in certain regions, different models project 

opposite changes in rainfall amount, which highlights the uncertainty of future climate 

change projections even when sophisticated state-of-the art GCM tools are used.There are 

four main sources of uncertainty in climate projections: 

1.  Uncertainty in future levels of anthropogenic emissions and natural forcings (e.g., 

volcanic  

eruptions);  

2.  Uncertainty linked to imperfect model representation of climate processes;  

3.  Imperfect knowledge of current climate conditions that serve as a starting point for 

projections; and 

4.  Difficulty in representing inter annual and decadal variability in long-term 

projections. Efforts are made to quantify these uncertainties. The future evolution of 

greenhouse gas emissions is highly uncertain due to socio-economic, demographic, and 

technological evolution. Alternative greenhouse gas emissions scenarios are used to drive 

GCMs in order to obtain a range of possible future outcomes. Additionally, models require 

initial conditions to begin the forecast, and these are also not known with high accuracy. 

Therefore, projections are performed starting from slightly modified initial conditions to 

obtain a series of simulations, termed an “ensemble.” Finally, models cannot perfectly 

simulate all climate processes; therefore, simulations from multiple models are produced, and 

amulti-model ensemble mean (or median) is thought to be the most probable future climate 



trajectory. It is important to communicate uncertainty in climate change projections and 

provide the following messages:  

• Uncertainty does not mean that future projections are unknown or false. 

• Uncertainty can be quantified.  

• Decisions can be made in the face of uncertainty. For example, decisions are 

routinely made in the context of military operations and financial investments when 

uncertainty is greater than that of climate projections. 

Uncertainty is compounded with downscaling due to assumptions that are inherent in models. 

With  

each modelling stage, uncertainties are naturally added because more assumptions are made. 

Although downscaling can provide decision makers with the ability to visualize relevant, 

fine-resolution climate features, a tradeoff is that uncertainty and error are difficult to 

quantify. Thus, evaluating tradeoffs in error created by the downscaling process versus 

uncertainties in GCM outputs is important. Often, practical information can be derived from 

GCMs alone (e.g., magnitude of temperature increase), which may be sufficient to identify 

potential impacts and a range of possible management options. 

 

C. Reanalysis and gridded climate data 

Reanalysis of past weather data presents a clear picture of past weather, independent of the 

many varieties of instruments used to take measurements over the years. Through a variety of 

methods, observations from various instruments are added together onto a regularly spaced 

grid of data. Placing all instrument observations onto a regularly spaced grid makes 

comparing the actual observations with other gridded datasets easier. In addition to putting 

observations onto a grid, reanalysis also holds the gridding model constant—it doesn't change 

the programming—keeping the historical record uninfluenced by artificial factors. Reanalysis 

helps ensure a level playing field for all instruments throughout the historical record. 

Purpose: 

The purpose of reanalysis is as: 

• Initialization of operational weather forecasts 

• Climate analysis over historical periods 

• Provision of initialization and boundary data for atmospheric limited area models 
(LAMs, e.g., regional climate models) 



• Validation of global and regional climate model experiments 

• Provision of atmospheric boundary conditions for, e.g, hydrological models 

Strengths: 

• Global data sets, consistent spatial and temporal resolution over 3 or more decdes, 

hundreds of variables available; model resolution and buases steadily improved. 

• Reanalysis incorporate millions of observations into a stable data assimilation system 

that would be nearly impossible for an individual to collect and analayze seperately, 

enabling a number of climate processes to be studied. 

• Reanalysis data sets are relatively striaghtforward to handle from standpoint. 

Limitations: 

• Reanalysis data sets should not be equated with“observations“ or “reality“. 

• The changing mix of observations, and biases in observations and models, can 

introduce spurious variabality and trentd into reanalysis output. 

• Observational constraints, and therefore reanalysis reliabality, can considerably vary 

depending on the location, timeperiod, and variable considered. 

D. Gridded Datasets 

Gridded datasets enable a systematic analysis of spatio-temporal climate (change) patterns. 
These datasets allow detection and attribution of human influences on climate, re-analyses 
important for NWP and climate model initialization and provision of boundary conditions 
Gridded data sets are important reference for climate model validation. 

Limitations: 

• Spatio-temporal consistency of gridded data not always given 
• E.g., effective resolution < nominal resolution (-> smoothing of spatial variability, 

smoothing of extremes). E.g., temporal changes in observational network (-> artifical 
trends) 

• Connected to this: long-term gridded time series affected by poor data availability in 
historic times (e.g., before 1900) 

• Systematic biases of surface measurements might not be accounted for 
• Uncertainties due to gridding method 

 


