

Swiss Agency for Development and Cooperation SDC

IHCAP – Indian Himalayas Climate Change Adaptation Programme Capacity building programme "Cryosphere" Level-2 (5 January – 13 February 2015)

Theoretical frameworks for DRR

Disaster Risk Reduction

Dr. Holger Frey, February 5, 2015

Can be effective on the level of: 1) Hazard (ie, modifying hazard potential)

Can be effective on the level of: 2) Damage potential

Flood protection

Avalanche and rockfall protection

HCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

Can be effective on the level of:

3) Disaster Preparedness

Preparing disaster response plans at village level (Red Cross)

Monitoring, early warning systems

Can be effective on the level of:4) Responsiveness and recovery

Military often provide most immediate response.

International assistance (e.g., Red Cross, financial aid) delayed, but important for long term recovery. HCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

EXAMPLES OF DIRECT MEASURES

Measures at glacier lakes

- Remedial actions at glacier lakes in the Cordillera Blanca Peru
- Lower Grindelwald glacier, Switzerland
- Tsho Rholpa, Nepal

Cordillera Blanca

ition Programme: Level-2 course

- 8°50' 9°35' S
- 60 peaks > 5700 m a.s.l. (Huascarán 6768 m a.s.l.)
- Glacier area 2010: ~530 km²
- More than 800 glacial lakes
- Densely populated rio Santa Valley (267'000 inhabitants in the Callejón de Huaylas)

Cordillera Blanca

- Past 150 y: at least 24 GLOFs with > 6000 casualities
- About 20'000 deaths from glacier related processes in the past 60 years

Laguna Palcacocha

 Outburst 1941: Ice avalanche → spillover → destruction of Huaraz, 4,000 lives lost

Notiaias restrictionaciones (1942)

HCAP –

The GLOF's destructive path through the city of Huaraz in 1941. Servicio Aerofotográfico Nacional del Perú Dr. Holger Frey, February 5, 2015

Remedial actions executed in Peru

- GLOF 1941
 Laguna
 Palcacocha
- → Destructions in the city of Huaraz
- Establishment of a group for 'glaciology and hydrological resources'
- Until today: remedial measures at 38 glacier lakes

Disaster Risk Reduction

Dr. Holger Frey, February 5, 2015

Experience since the 1950's

 Late 1980's: almost no freeboard, water percolating through icecored moraine

HCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

Disaster Risk Reduction

Dr. Holger Frey, February 5, 2015

Siphoning (500 I /sec) \rightarrow very slow lowering of lake level

 1991: ice avalanche → retrogressive erosion (20–25 m channel) → (few) damages in Carhuaz

→ Decision to construct a 2m diameter tunnel

HCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

Tunnels at Laguna 513: Future

- Event 2010 (more to follow...)
- Planning of a further tunnel \rightarrow lowering by another 30m

HCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

More examples from Peru

- Lowering of lake level
- Artificial dam: increase of freeboard / reinforcement of dam

More examples from Peru

Autoridad Nacional del Agua

HCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

• Open channel through moraine

More examples from Peru

Outburst May 2008

IHCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

Disaster Risk Reduction

Dr. Holger Frey, February 5, 2015

Construction of a tunnel

- Length 2km
- Tunnels allows lake level control and transport of construction machines

Construction of a tunnel

- New max. Volume of 500,000 m^3
- New tunnel entries will be required due to lowering of the lake bottom

IHCAP

Construction of a tunnel

Tsho Rolpa, Nepal

Volume of ~90 Mio m³

Tsho Rolpa, Nepal

- Dammed by ice-cored
 LIA moraine
- Almost no freeboard

Y. Tomomi (1998)

HCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

IHCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

Disaster Risk Reduction

Dr. Holger Frey, February 5, 2015

Anticipation

Richardson & Reynolds, 2000

Multi-purpose structures

• Protective structures that can be used for hydropower generation

Example Swiss Alps

- Formation of new glacier lake expected for mid 21st century •
- Case study for integration of new lake into an existing hydropower • scheme

IHCAP

STRUCTURAL DRR MEASURES: TO REMEMBER

- Structural measures at lakes
 - Lowering of lake level (siphoning, tunnelling, trenching)
 - Raise and/or reinforcement of dam
 - Outlet control
 - → Lowering of the *hazard potential*
- Other mass movements: Protective structures
- Measures require maintenance
- Constantly changing conditions require constant observations
- Multi-purpose infrastructures offer interesting opportunities

Dr. Holger Frey, February 5, 2015

Lake outburst 11 April 2010

Dr. Holger Frey, February 5, 2015

Laguna 513: Event April 2010

Area of the freshwater intake at Pampa Shonquil during the glacial lake outburst flood, April 11, 2010 (photo by Arq. Luis Meza)

Disaster Risk Reduction

Dr. Holger Frey, February 5, 2015

Lake outburst 11 April 2010

HCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

Disaster Risk Reduction

Dr. Holger Frey, February 5, 2015

INDIRECT (SOFT) MEASURES

ACTION PLAN

RED WARNING	More than 30 mm rain observed in 1 hour and expected to continue in the next 2 hours.	Serious flooding expected in low-lying areas	EVACUATION
ORANGE	15-30 mm rain observed in 1 hour and expected to continue in the next 2 hours. INTENSE	Flooding is threatening	ALERT for possible evacuation
YELLOW WARNING	7.5-15 mm rais observed in 1 hour and expected to continue in the next 2 hours. HEAVY	Flooding is possible	MONITOR the weather condition

IHCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

INDIRECT (SOFT) MEASURES

ALARM CONCEPT

IHCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

Action plan EWS Carhuaz

- 4 alert levels
- Operation procedures at each level
- Accompanied by a list with names and cell phone numbers of involved persons (and their deputies)

Alarm concept

Sirens (combined with loudspeakers?) → assessment of conditions required (wind, blackout,...)

Laguna 513: Evacuation routes

Laguna 513: Assembly points

INDIRECT (SOFT) MEASURES

HCAP Indian Himalayas Climate Change Adaptation Programme: Level-2 course

TO REMEMBER

- Structural measures lower the hazard potential
- Indirect, non-structural measures lower the vulnerability and/or exposure
- Direct measures are often more expensive and require more time for implementation
- Socio-economics have a large impact on indirect measures
- Indirect measures require constant revisions and constant contact to the population (communication!)
- Without preparedness and responsiveness of the populations, indirect measures will not be successful

Laguna 513: Compilation of a hazard map

Generalized version of the combined hazard map based on the 3 scenarios modelled with RAMMS including the results from a field evaluation in June 2012:

HCAP – Indian Himalayas Climate Change Adaptation Programme: Level-2 course

