

Avalanche contributory factors & Avalanche Mitigation Techniques

Dr H S Negi hs.negi@sase.drdo.in

Snow & Avalanche Study Establishment, DRDO Him Parisar, Plot No. -1, Sector-37A Chandigarh – 160 036

Avalanche Mitigation Techniques

1. TEMPORARY METHODS

- (i) AVALANCHE FORECASTING
- (ii) AWARENESS & RESCUE TRAINING
- (iii) CONTROLLED RELEASE (ARTIFICIAL TRIGGERING)

2. PERMANENT METHODS

(I) STRUCTURAL CONTROL MEASURES

(ii) HAZARD MAPS

(iii) AFFORESTATION

Data requirement

Class I: Field Data/Stability Tests * Shovel Shear * Rutschblock * Collapse * Shear Frame *** QSLBT**

Data requirement

Class II: Stratigraphy Data

Data requirement

Class III: Meteorological Data

•Factors used to interpret snow stability roughly stratified into three classes based on there relevance for assessing snow stability

- The higher the class number, the more uncertain the interpretation
- Class III : Met Factors

Uncertain

- Class II : Snowpack Factors
- Class I : Stability Factors

Relevant

Certain

Class I (Stability)

Deals with direct relationship between loads on weak layers, relevant to current stability

Stability tests

#Used to apply stresses to the snow cover and to observe whether or not it fails # Best if carried out in formation zone

Test Skiing

- Skier adds stress to the snow
- Limited to short slopes
- Avoided when weakness is suspected deep

Explosives

- Apply greater stresses at a more rapid rate
- Long slopes with unsafe access, deep weak layers, and hard snow

Rutschblock Test

- Involves loading a block of snow by a person in several stages
 - 1 : failure under the weight of the block
 - 2 : One person on skis steps carefully
 - 3 : Weights the skis by making a rapid knee bend
 - 4 : The person on skis jumps
 - 5 : Person on skis jump second time
 - 6 : A person jumps without skis
 - 7 : No failure Observed

1,2,3 : Poor, 4,5: Fair, 6 or no Failure : Good

Test Column

> Surcharge of snow blocks

Clepih of Weak have

Collapse Test

•Cutting of a column of snow and loading it with blocks of snow

Tilt Board Test

•Used to locate weak layer in soft and very soft snow

Shear Frame Test

•Used to measure the shear strength of snow layers

- Shear frame and pull gauge
- Shear frame index = Force at failure/ Area(cross- sectional)

Shovel Shear Test

 Principal objective is to locate weak layers and interfaces

Quantitative Step Loading Block Test

• Determine failure load, failure plane and failure depth with good accuracy

Class II (Snowpack) : Relevant, less directly related

- Past avalanches
- Snowpack Depth : Anchor, Surface penetrability
- Snowpack Structure
- Depth & Hardness of Snow above weak layer
- Snow temperature
- Ram profile
- Acoustic Signals
- •Glide Speed

SNOW PIT OBSERVATION-Direct method

- Layer density
- Layer thickness
- Grain Size and type
- Temperature
- **Temperature Gradient**
- **Ram Index, Shear Strength and Wetness**

Frequent observations are not possible at a short interval for large area

DEPTH HOAR GRAINS SIZE 6-8mm

COLUMNS OF SNOW DURING TEMPERATURE GRADIENT

CRYSTAL SCREEN

Hardness "Resistance to the penetration by a rigid object"

H (cm)

Class III : Meteorological Factors : Indirect Evidence

- Technique: Relate Met data to stability through empirical relationship
 - Amount of new snow
 - Wind speed & Direction
 - Air temp
 - Solar radiation
 - Humidity
 - Snow surface characteristics
 - Weather Forecast
 - Blowing snow activity
 - PI
 - Settlement of new snow

Avalanche Forecasting Techniques

Forecasting Techniques at SASE

- **1. Contributory factors approach**
- 2. Snow cover build-up
- **3. Field studies**
- 4. Stratigraphy data
- 5. Statistical & Al Models
- 6. Snow cover simulation model
- 7. Remote sensing & GIS based model
- 8. Experienced judgment: Dominant

Snow Cover Build Up

Field Tests Based Forecasting

Ram Resistance(kg)

Avalanche Forecasting Models

Numerical Avalanche Prediction:
Nearest Neighbors
Discriminant Analysis

• Expert Systems # Neural Network Technique # Fuzzy logic technique

Techniques of Avalanche Forecasting

Nearest Neighbor Technique:

Past data set

Present data set

Max T	d1	Max
Min T	d2	Min
Amb T	d3	Amb
RH	d4	RH
TSD	d5	TSD
FSD	d6	FSD

Total distance = D=d1+d2+d3+d4+d5+d6

 $d = \{ (X_2 - X_1)^2 \}^{1/2}$

Techniques of Avalanche Forecasting

Discriminant Analysis:

Avalanche occurrence data are stratified into distinct groups

dry avalanches, wet or moist avalanches, Days without avalanches

#In which group do today's data fall?

Works best when the groups used to classify cases do not overlap much

Schematic of Group Separation in Discriminant Space

Techniques of Avalanche Forecasting

Neural Networks Approach

Fuzzy Rule-Based System

General Scheme of a Fuzzy System

Parameters

Parameters used:

- 1. Fresh Snow
- 2. 24hr Fresh Snow
- 3. 72 hr Fresh Snow
- 4. Snowfall Intensity
- 5. Standing Snow
- 6. Free Penetration
- 7. Wind speed
- 8. Ambient Temperature
- 9. Snow Surface Temperature
- 10. Sunshine Duration

AVALANCHE ASSESSEMENT (Contributory Factor Approach)

AVALANCHE SITUATION ASSESSMENT GULMARG SECTOR (09-FEB-2005)

Current Situation			Gu	Imarg	Himmat		
Fresh snow (cm)				57	65		
Storm snow (cm)				258	459	
Standing sno	w (cm)			197		420	
Settlement (c	m)			17	' (09%)	45 (11%)	
Snow surface	conditi	on		(01199	01199	
Snow surface	e temp (⁰	C)			-3.0	-13.0	
Av wind spee	d (kmph)			0.6	ХХХ	
Current weat	ner				7487	7487	
Projected weather Day 1		MM	15 <u>Statistical Forecast</u>				
		Day 1	L	13	Light snowfall		
<u>&</u> Avalancho w	arning	Day 2	2	08	Lig	ght snowfall	
Dev 3 28 V light snowfa Dev 4 14		,	28	V light snowfall			
NN Model				33%			
Expert Systems				Medium			
Forecaster assessment				Medium			
Forecast to be issued	Medium danger avalanche warning along steep avalanche slopes above an altitude of 3200 mtr.						

S. No.		Parameters			Qualit	ative	Quantitat ive
					CS	PS	
1.		Fres	h Snow		С	С	
2.		Stan	ding Sno	w	С	С	
3.		Stor	m Snow		С	С	
4.		SI/PI			С	С	
5.		Sett	ement		С	С	
6.		Snow Temp			N	N	
7.		Wind Speed			т	Т	
8.		Wind Direct			N	N	
9.		Radiation		N	N		
10.		Field Test			-	-	
11.		Stratigraphy			-	-	
LOW	2	:5-40	Score	С	55%	55%	
MED	4	0-70	beore	т	11%	11%	
HIGH	7	0-90	BIAS				
ALL ROUND		>90	DECISIC	N	MEDIUM		
Feed Back	Feed Back NO feed back						

	STRATIGRAPHY STABILITY ASSESSMENT							
	Profile	Crystal	Ram	Week Layer	RB Score	Stability	C/N/T	Danger Applicable
t		+ í +	>10 >10	NO	7	Abs Stable	NC	NO
	1			NO	6	Very Good	NC	NO
		~ ~	70 >20 >10	YES	6	Fairly Good	NC	NO
		XXXXX	>10	YES	6/5	Good	т	ADV
		^^	50 >10	YES	5	Fair	т	ADV
			4	YES	5/4	Fairly Poor	T/C	LOW
		++	ĩ	YES	4/3	Poor	T/C	LOW
		∀ ∨ \$ \$	<4 30	YES	3/2	Very Poor	C	MED
			10	YES	2/1	Abs Poor	C	MED
		V V xxxxx	<2	Definitely YES	1	Abs unstable	VC	HIGH

Valid up to 3 days (Absolutely)

• Valid up to 6 days, if departure of mean snow surface temp is within +1°C

Snow Cover Simulation Model

Station Patsio (02-03)

Station Dhundi (02-03)

Simulated Vs. Observed Standing Snow Profile (cm)

Simulated Vs. Observed Standing Snow Profile (cm)

In Greater Himalayan range

Low temperature

Low Precipitation (Dry Snow)

In Pir Panjal range

High precipitation

Temp High (Wet snow)

TEMPERATURE PROFILE (C) -

(c

m) 33

22

11

 Date
 8
 12
 16
 20
 24
 28
 1
 5
 9
 13
 17
 21
 25
 29
 4
 8
 12
 16
 20
 24
 28
 1
 5

 Month
 1
 1
 1
 1
 2
 2
 2
 2
 2
 2
 2
 3
 3
 3
 3
 3
 3
 3
 3
 3
 4
 4
 9 4 4

13 17

4

GIS-based dynamic avalanche hazard modeling

DEM

Methodology: avalanche hazard

Results: dynamic avalanche hazard

Maps will help in assessing the eminent hazard.

Hazard Zones	lerrain based		Snow - IV	let	Final Hazard	
			parameter l	based		
	Area (Ha) %		Area (Ha)	%	Area (Ha)	%
	6 7 6					6
High Hazard	45353	19.9	40456	17.8	38251	16.8
Medium hazard	71403	31.4	109007	47.9	52799	23.2
Low hazard	91670	40.3	7977	3.5	50817	22.3
No Hazard	19140	8.4	70126	30.8	85699	37.7

Current & Six Day Advance Weather Prediction used for avalanche Forecasting

27 KM Resolution

9 KM Resolution

AVALANCHE DANGER SCALE

Degree of danger	Implications	Suggestion/ Precautions		
Low	Generally favourable condition. Triggering is generally possible only with high additional loads and on very few extreme slopes. Only sluffs possible and reach valley in small sizes.	Valley movements are safe. Movement on slopes with care.		
Medium	Partly unfavourable condition. Triggering possible from the most avalanche prone slopes with low additional loads and may reach the valley in medium size.	Avoid steep slopes. Route should be selected with care. Valley movement with caution. Movement on slopes with extreme care.		
High	Unfavourable condition. Triggering possible from all avalanche prone slopes even with low additional loads and reach the valley in large size.	Suspend all movements. Airborne avalanche likely.		
All round	Very Unfavourable condition. Numerous large avalanches are likely from all possible avalanche slopes even on moderately steep terrain.	Suspend all movements. Airborne avalanche likely.		

Movement with care - All safety measure shall be taken while crossing suspected avalanche paths.

Movement with extreme care – Rescue party shall stand by.

AVALANCHE AWARENESS COURSES

Year	No. of Persons Trained
2004-05	11149
2005-06	10876
2006-07	10360
2007-08	11130
2008-09	8628
2009-10	7287
2010-11	6012
2011-12	5573
2012-13	3756

14000 11149 10876 12000 11130 10360 10000 8628 Strength 7287 8000 6012 5573 6000 3756 4000 2000 0 2005-06 2007-08 2008-09 2009-10 2012-13 2004-05 2010-11 2011-12 2006-07 Year

Persons trained in last 10 years

AVALANCHE AWARENESS TRAINING MATERIAL

AVALANCHE AWARENESS MULTIMEDIA

AVALANCHE AWARENESS

AVALANCHE AWARENESS POSTERS

Artificial triggering : Controlled release of avalanches Objective :

- To release avalanche under controlled conditions and
- To test the stability of the snow pack

Avdhav Visphotak

Hand placing of charge

* Total no of triggering* Total explosive used

ARTILLERY

: 30-40 Every year : 50-60 Kg Every Year

Results

- large avalanche formation prevented
- No avalanche reached national highway
- Improvised techniques developed, training to Army, BRO,ITBP

Overview

of

Avalanche Contro

Structures

Avalanche Path

Starting Zone Avalanche Control Structures

- Formation Zone Structures
- Supporting Structures
- Snow Retaining Structures
- Avalanche Barriers

Purpose

To arrest/retain the snow on slopes, to avoid its sliding to **tolerable limits**

Good Choice

- Object to be protected lies in starting zone
- Slope is reasonably regular and even
- Technically feasible and economically viable
- Area is accessible for construction and erection

Motto : It is best to fight the root of evil

Starting Zone Rigid Avalanche Control Structures - Snow Bridges

Type of Snow Bridges

Starting Zone Rigid Avalanche Control Structure - Snow Rakes

Starting Zone Flexible Avalanche Control Structure - Snow Nets

Snow Nets Erection

Middle/Track/Accelerating Zone Control Structures

- i) Direct Protection Structures
 - Braking Dam/Splitter
 - Wedges
 - Avalanche Protection System (APS)

- ii) Deflecting Structures
 - Snow Shed/Snow Gallery (Artificial Tunnel)

Middle Zone - Direct Protection Structures

Splitter/Braking Dam

Avalanche Protection System

Wedges

Middle Zone (Deflecting Structures) - Snow/Avalanche Shed

Run out Zone Avalanche Control Structures

- Guide Wall
- Diversion Wall
- Catch Dam
- Mounds

Deflected avalanche

P.

Pr

Original avalanche path

Diversion Walls & Guide Walls

Catch Dams

Mounds

Wind Drift Control

Wind Drift Control Structures - Snow Fences

Wind Drift Control Structures – Wind Baffles

Wind Drift Control Structures - Jet Roofs

Tunnels

Biological Measures - Afforestation

Re-alignment of Highway

Thank You