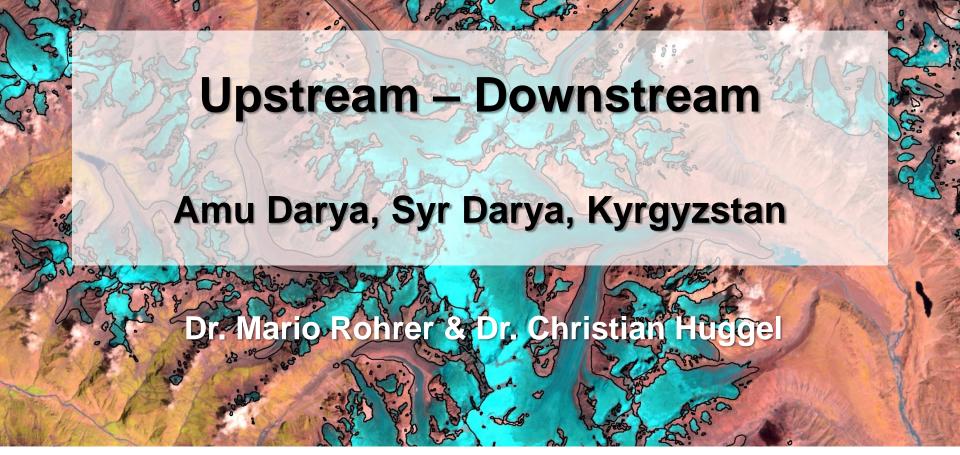
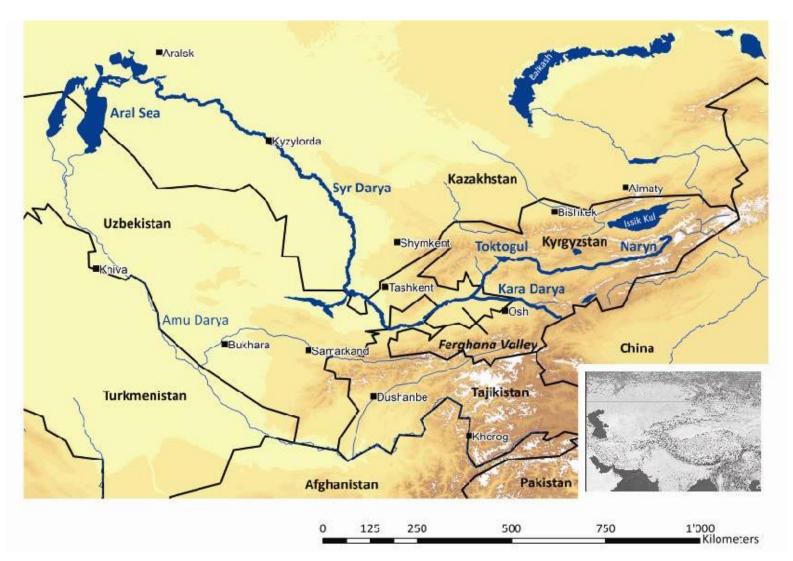


Swiss Agency for Development and Cooperation SDC



IHCAP – Indian Himalayas Climate Change Adaptation Programme Capacity building programme "Cryosphere" Level-2 (February 2015)


Geographical overview

Topographic map of Central Asia

Geographical overview

Hydro-political map of Central Asia

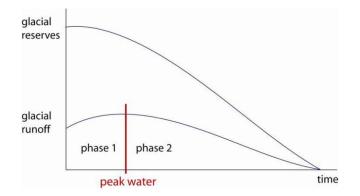
3

Hydrological situation

Central Asia

- The post-Soviet states of *Kazakhstan*, *Kyrgyzstan*, *Tajikistan*, *Turkmenistan* and *Uzbekistan* make up an area that is larger than *4 Mio. km*² and is home to ~60 Mio. people.
- Syr Darya and Amu Darya are the two main rivers of the region.

- The majority of *water feeding* of the two rivers is formed from *glacier-* and *snowmelt* in the high *Pamir* and *Tien Shan ranges* in Kyrgyzstan and Tajikistan.
- The Syr Darya river is formed by *two tributaries* originating in Kyrgyzstan, the *Naryn River* and the *Kara Darya* river.
- As it flows towards the Aral Sea, the Syr Darya river provides *freshwater and water for irrigation* to *Uzbekistan, Tajikistan* and *Kazakhstan*.


Climatical situation

- Central Asia is characterised by a *continental* and *semi-arid to arid climate* with *hot summers* and *cold winters*.
- **Precipitation** rates are **low**, especially **during summer**, when precipitation occurs almost exclusively in the mountainous regions.
- Past decades:
 - ⇒ *temperatures* have *increased* in all parts of Central Asia
 - ⇒ *precipitation* rates have *increased at low altitudes* and decreased at *higher elevations*
 - ⇒ *glaciers* in the Tien Shan mountains have *lost* much of their *volume*
- Future:
 - \Rightarrow continuous increase of temperature (2.6 4.4 °C by 2050)
 - \Rightarrow Precipitation is likely to increase in winter (4 -8 %) and decrease in summer (4 7%) by 2050
 - ⇒ probably more extreme events such as drought-prone summers and flooding in winter/spring
 - ⇒ earlier and more intense snowmelt; decrease in snow cover duration
- even in the most glacier-friendly scenario, glaciers will lose up to two thirds (−60%) of their
 1955 extent by the end of the 21st century

Ref: Sorg et al, 2014: The days of plenty might soon be over in Central Asia: Environmental Research Letters 10/2014

Buffering effect of glaciers

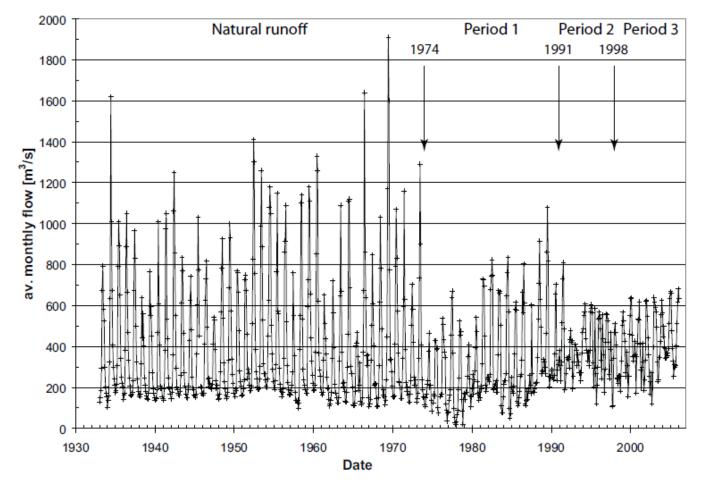
- In Central Asia, water supplies are critically dependent on glacier melt.
- The glaciers act to *buffer periods of seasonally low flows*, since glacier melt is highest during summer when other sources of runoff are lowest.
- While glacier melt in these regions may contribute a relatively small part of the annual flow, it often contributes a substantial part of low flows, which typically occur during the time of year when water demand is highest.
- In the *future*, however, this buffering of glaciers will likely undergo a substantial change and reduced glacier volume will eventually result in a *decrease of glacier-fed summer runoff*.
- Water shortages during summer are thus likely to be caused by two exacerbating factors:
 - ⇒ less precipitation
 - ⇒ less glacial meltwater

Tipping point (peak water) in glacial runoff (Sorg, A., Mosello, B., Shalpykova, G., Allan, A., Hill, M., Stoffel, M.)

Growing demand for water

- The Central Asian economies are dominated by *irrigated agriculture* practices and water consumption has been mounting to unsustainable levels.
- In order for the Soviet Union to become self-sufficient, priority for water allocation was given to the *cotton* production in the *Uzbek* Soviet Socialist Republic (SSR) and to *rice* production in the *Kazakh* SSR, with the *Kyrgyz* SSR designated as *water supplier*.
- Major investments were made in the construction of dams, reservoirs, irrigation canals and other structures to promote and manage the *transfer* of *water from its source in the Kyrgyz mountains to the main growing areas in the Uzbek and Kazakh* SSRs.
- More than 90% of water in the region goes to irrigated agriculture.
- Uzbekistan, for instance, is currently the second largest exporter of cotton in the world.
- The water consumption in the region increases also due to the current *high population growth rate* of between 2.5 and 3.4% per year.
- As *living standards improve* and demand for resources increases, *pressures on scarce water resources heighten*.

8


Toktogul Reservoir

Naryn/Syr Darya Basin

- The runoff of the Naryn/Syr Darya is measured at the *Uch Kurgan gauge station*.
- The *Toktogul dam* was commissioned 1974.
- The Toktogul dam is by far the *largest storage facility* in the Aral Sea basin, with a total storage volume of around 19.5 km³.

Mean monthly flow of the Naryn/Syr Darya River at the Uch Kurgan Gauge

Sources: Global Runoff Data Center (GRDC); and Andrey Yakovlev, Uzbek Hydrometeorological Service, Tashkent, Uzbekistan.

International Water Management in the Naryn/Syr Darya Basin

The *runoff variation* of the past 80 years is characterized by *four distinct periods*.

Natural runoff: 1933-1974:

- The *runoff* was *natural* and determined entirely by seasonal and climatic variability.
- A substantial change in flow patterns occurred with the commissioning of **Toktogul dam** (1974).

Period 1: 1974-1990:

- *First river management period* characterized by centralized management by the USSR of the Toktogul reservoir and the river basin as a whole.
- After the dam was commissioned, a general attenuation of peak downstream flows was observed
- Moreover, an overall *decline of monthly flow variability* occurred, especially in the summer months.
- The system was oriented primarily toward water provision for *irrigated agriculture* (particularly *cotton* production) in *Uzbekista*n and *Kazakhstan*.
- In the early 1980s, a water management organization for the Naryn/Syr Darya was set up in Tashkent, Uzbekistan. Its mandate was to operate and maintain all headwater structures with a discharge of more than 10 m³/s.
- The electricity produced at Toktogul during that period went into the Central Asian Energy Pool (CAEP) and was thus shared among the riparian republics. In exchange, the *neighboring republics supplied coal, oil, and natural gas to Kyrgyzstan* in winter to cover increased Kyrgyz energy demand during the colder months.

International Water Management in the Naryn/Syr Darya Basin

Period 2: 1991-1997:

- The *second river management* period commenced with the collapse of the Soviet Union in 1991.
- This event brought an end to centralized management of water resources and water-energy tradeoff arrangements.
- Syr Darya became an *international river basin*.
- The newly independent states became involved in *disputes over water allocation* very quickly.
- Coal, oil, natural gas, and electricity supplies to Kyrgyzstan declined dramatically between 1991 and 1997.
- Since *Kyrgyzstan has no fossil fuel sources of its own*, it cannot rely on domestic fossil fuel for electricity production and thermal energy.

- Kyrgyzstan switched the operation of the Toktogul reservoir *from an irrigation to an electric power production mode*.
- Since the winter of 1993, water flows have *no longer peaked in summer* but *rather in winter*.

International Water Management in the Naryn/Syr Darya Basin

Period 2: 1991-1997:

- The main political problem since 1991 concerned *upstream-downstream antagonisms*.
- Upstream interests derived from seasonal water demands are diametrically opposed to downstream water demands and interests.

UPSTREAM

Kyrgyzstan is eager to store water between spring and autumn and to release this water between winter and spring for hydropower production.

DOWNSTREAM

Uzbekistan and Kazakhstan, by far the largest consumers of *irrigation water* in the river basin, wish to obtain much more water during the *growing season* (April to Sept.) than in the nongrowing season (Oct. to March).

They prefer *low water* releases in *winter*, because high flows in winter may cause floods due to ice in the river bed, which reduces water flow capacity.

Thus, the *principal problem* to be solved is to *coordinate the management* of the Naryn/Syr Darya *cascade of reservoirs* that are located entirely in Kyrgyzstan, and in particular the *handling of trade-offs* between consumptive water use for downstream irrigation purposes in summer and nonconsumptive use for upstream energy production in Kyrgyzstan in winter.

International Water Management in the Naryn/Syr Darya Basin

Period 3: 1998-today:

- In March 1998 Kazakhstan, Kyrgyzstan, and Uzbekistan signed an *international upstreamdownstream water agreement*. This accord marks the beginning of Period 3.
- It addresses strong asymmetries of interests through economic exchanges.

Upstream-downstream water agreement

- The water management system put in place in 1998 holds that during the *vegetation season, Kyrgyzstan releases more water* than it needs for its own hydropower demand, and the resultant *energy surplus is distributed to Kazakhstan and Uzbekistan*.
- **Outside the growing season** (October 1–April 1), Uzbekistan and Kazakhstan **supply Kyrgyzstan with energy resources** (electricity, natural gas, fuel oil, and coal) in amounts that are approximately equivalent to the electricity they receive from Kyrgyzstan during the growing season.

Table 1 Release Schedule of Toktogul Reservoir as Established in the 1998 Treaty									
Month	1	2	3	4	5	6	7	8	9
q [m ³ /s]	495	490	300	230	270	500	650	600	190
Source: Data available at http://ocid.nacse.org/tfdd/index.php.									

14

Cotton monoculture in Uzbekistan

Uzbekistan is the world's second 29 largest cotton exporter. In 2006, the raw cotton crop was more than 3.6 million tons, which is 20% more than it was in 2000.

Syr Daria: Upstream – Downstream outlook

Problems of Water Supply in Climate Change Conditions

- Mountainous lakes of Central Asia located in the runoff formation area on the territory of Uzbekistan and cross-border states – Tajikistan and Kyrgyzstan are mainly the potential source of clean and fresh water.
- Under conditions of progressing climate aridization and retention of existing situation with water resource management *further growth* of river *water salinity* level can be expected.

Desertification due to saline soil spreading

Sudochie Lake during an extremely law water period