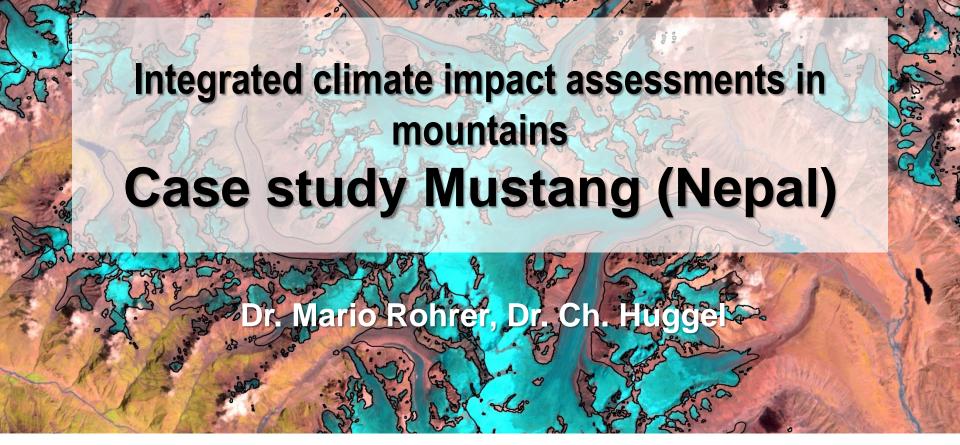
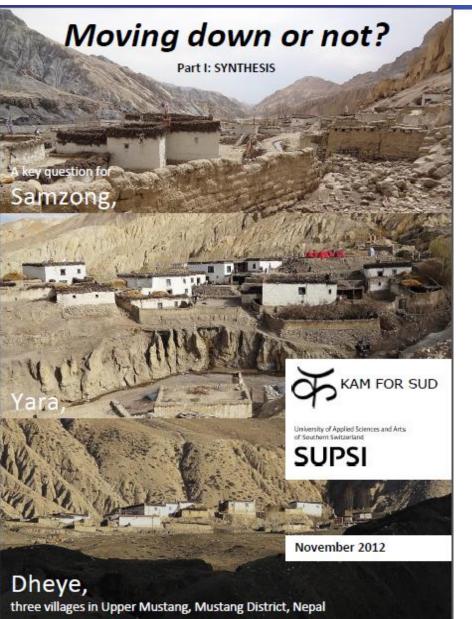


Swiss Agency for Development and Cooperation SDC





IHCAP – Indian Himalayas Climate Change Adaptation Programme Capacity building programme "Cryosphere" Level-2 (February 2015)

Contents

- 1. Introduction to the project
- 2. Geographical overview
- 3. Presentation of the three villages
- 4. Background of the study
- 5. Economic situation
- 6. Climate change
- 7. Qualitative assessment
- 8. Conclusions
- 9. Relocation sites

Project goals

The main goal of the project was to assess the most appropriate response for the three villages *Samzong, Yara* and *Dheye* (Upper Mustang) to face current and future *challenges* in terms of *water availability* as well as *natural risks*, which are at least partly *driven by climate change*

Ultimate question:

Is it appropriate and/or necessary to resettle the whole communities

This study was undertaken by:

- Kam For Sud (KFS) Swiss NGO working for a sustainable development in Nepal since 1998, <u>www.kamforsud.org</u>
- University of Applied Sciences of Southern Switzerland (SUPSI) <u>www.supsi.ch</u>
- Lo Mustang Foundation (LMF)

Nepali NPO, formed and directed by Lama Ngawang Kunga Bista, dedicated to developing the Upper Mustang region in the fields of education, health, environment and tourism,

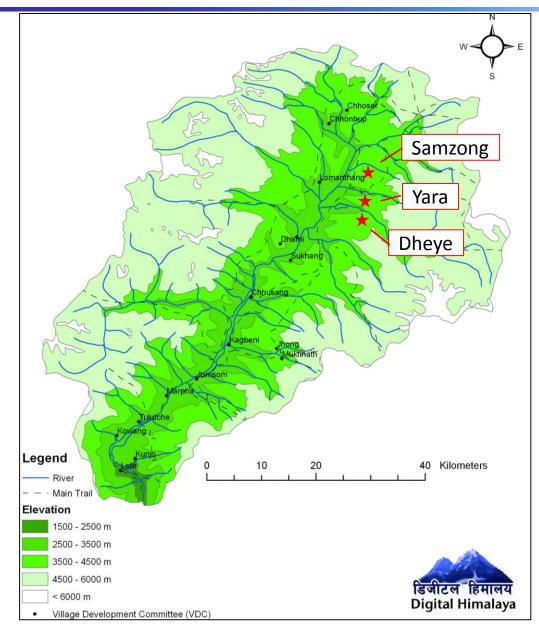
www.lo-mustanglmf.org

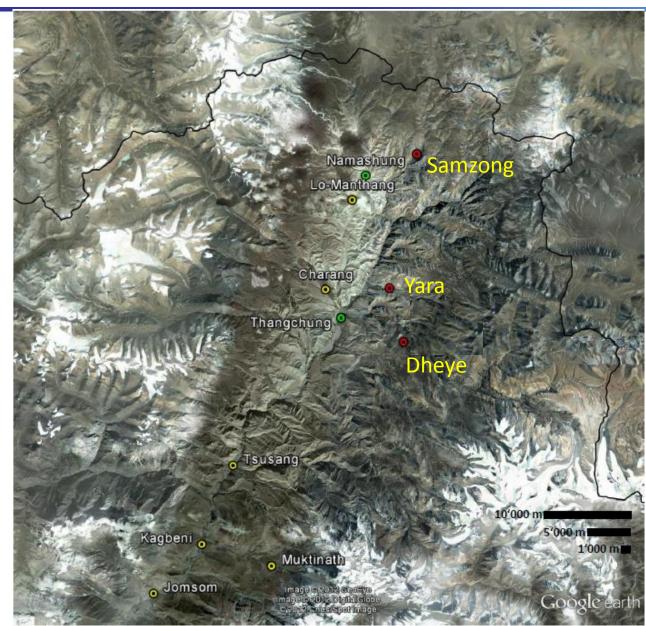
Meteodat GmbH

www. meteodat.ch

Overview

Location of Mustang District


- Upper Mustang (from Tibetan Mun Tan, "the fertile plain") is the former Kingdom of Lo.
- Today it is part of Nepal's District Mustang one of the 75 districts of Nepal


- Mustang is part of the **Trans-Himalaya**
- In the north, Mustang is bordering the Tibetan plateau of the People's Republic of China
- in west: the Nepalese
 Districts Dolpa,
- in the **south**: Myagdi
- in the **east:** Manang

Zurick et al. (2006)

District Mustang

Study area

- The villages are located in *Upper Mustang*, which is a "restricted area".
- Upper Mustang is part of the Annapurna Conservation Area (ACA).
- Altitude:

village	m asl
Samzong	~ 4000
Yara	~ 3650
Dheye	~ 4000

- The villages lie in unglaciated catchments.
- Samzong and Dheye are accessible on foot only.
- Yara is accessible seasonally by tractor.

Samzong

• Overview of Samzong seen from south

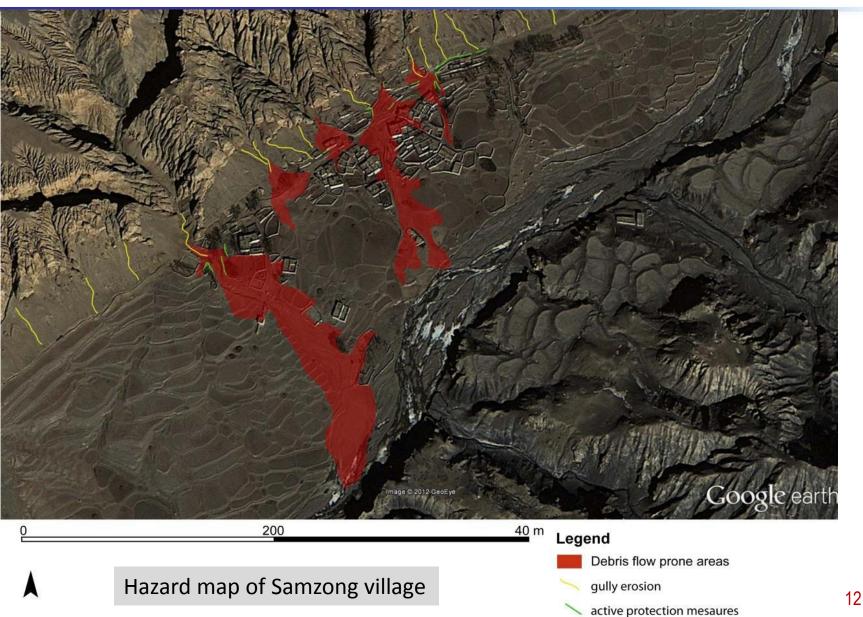
- Foreground: abandoned fields (in grey), separated from the settlement by the Samzong Khola
- Background: cliffs with ancient caves

Yara

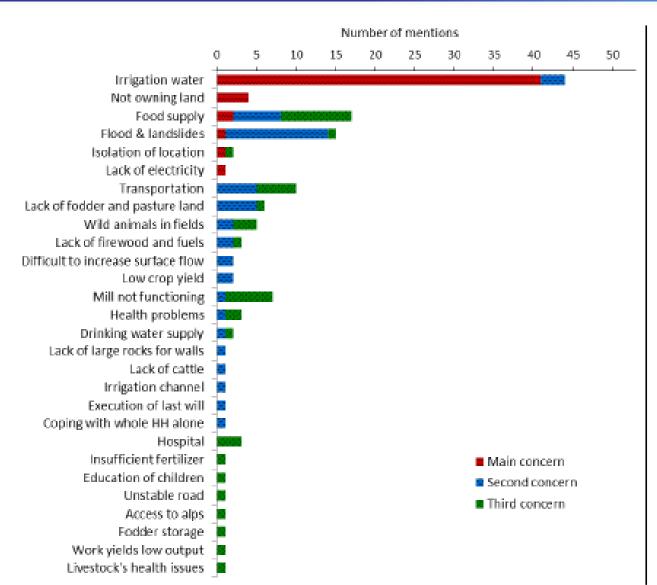
- Yara seen from the left riverside of the Puyung Khola
- The village is located on the right riverside

Dheye

• Overview of Dheye seen from southwest


10

Background of the study


Existing problems

- The predominant problem in all three villages is the combination of *insufficient water* availability and *inefficient irrigation supply systems*.
- Additionally, in *Samzong*, the settlement, as well as the surrounding fields and irrigation channels are threatened by *floods* and *landslides* during the summer.
- *Irrigation water* is seriously *lacking* from April to June.
- The *drinking water supply* was found to be *sufficient*.
- Agricultural activities are low productive and almost solely dependent on the perennial flow of the corresponding rivers.
- It is likely, that snow cover has became less during recent winters, generally producing less melt water in spring
- Each of the three villages lies within a *catchment*, that is *not glaciated*. This leads to a much heavier *water stress* compared to glaciated catchments with more favorable water regimes.

Background of the study

Background of the study

Main concerns

- *Main problems* faced by the community.
- 53 households have been asked to identify their three main issues about which they are most concerned.
- With a striking majority, the insufficient irrigation water was identified by the villagers as main problem.

Economic situation

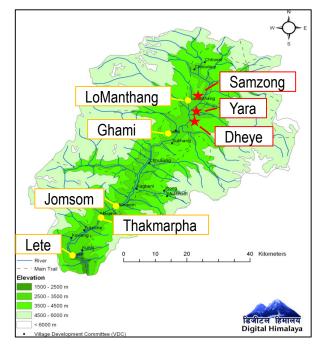
- In all villages, economic activities are mostly limited to *stockbreeding* (goats, cows, yaks, horses) and *subsistence agriculture*, strongly prejudiced by the scarce irrigation water.
- Stockbreeding is the main economic activity that allows generating some *monetary income*.
- Monetary income is essential to assuring the subsistence, since the *output from agriculture alone is not sufficient*.

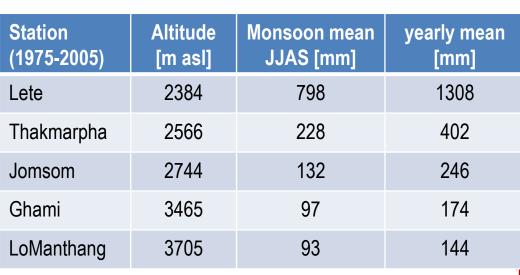
SAMZONG

- subsistence agriculture
- stockbreeding
- collecting and selling herbs

YARA

- subsistence agriculture
- stockbreeding
- collecting and selling herbs
- providing touristic accommodations (guesthouse, campground)
- handcrafts
- tourist guides
- tractor transport service
- small shop

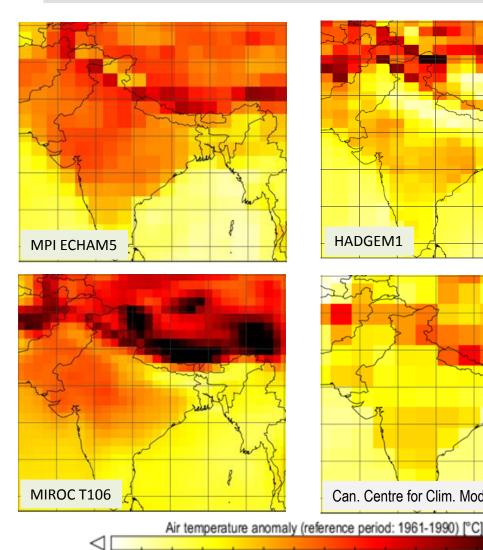

DHEYE

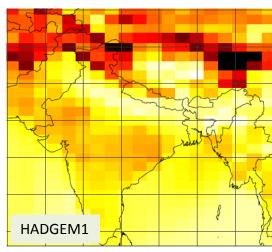

- subsistence agriculture
- stockbreeding
- collecting and selling herbs
- collecting and selling fossils

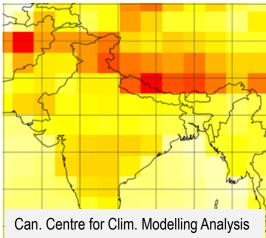
Of all three villages, Yara displays clearly the largest diversity of economic activities.

Climatic Conditions

- **Cold**, windy and dry climate \rightarrow almost desert • like landscape
- Mean *yearly precipitation* sums in the northern • part of Mustang: 200 mm or less
- Precipitation takes place *mainly during July to* September.
- Mustang lies in the *rain shadow* of *Annapurna* • (8100 m asl) and *Dhaulagiri* (8170 m asl).

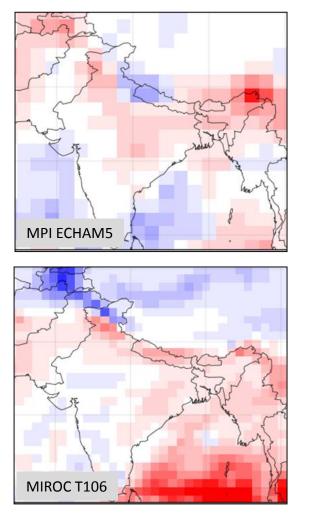


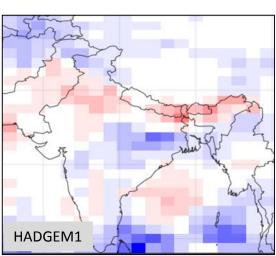


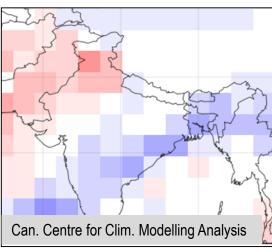


Climate Change

Air temperature anomalies in *January* for 2080-2099 based on *scenario SRA1B*




- *Temperature development* up to the end of the 21st century
- The anomalies were projected by different Global Circulation Models (GCMs).
- The emission scenario chosen is SRA1B (CMIP3), which is an intermediate one.


In Upper Mustang temperatures are expected to rise 6-10 °C in winter 4-10 °C in summer

Climate Change

Precipitation anomalies in January by 2090 based on scenario SRA1B

2.0

- The anomalies were projected by different Global Circulation Models (*GCMs*).
- The emission scenario chosen is
 SRA1B (CMIP3), which is an
 intermediate one.

In **Upper Mustang**

In *January*, the differences to the reference period (1961-1990) is expected to be small.

No dramatic changes in *monsoon precipitation sums* are expected.

Expected *delay of the onset of monsoon*: ~ 5 to 10 days

0.0

Precipitation change (reference 1961-1990) [mm/day]

Climate Change

Future changes in snow cover

- Even if the precipitation sums are not changing significantly in the future, the *implications*, particularly related to the *snow cover*, are *severe*.
- Assuming a *constant* future *precipitation* amount, as well as *increasing temperature* and *wind speed*, the snow cover is going to become less and less substantial, because of the following reasons:
 - > Overall *rising elevation of the snowline* due to increased temperatures
 - **Faster disappearing snow cover** due to warmer weather conditions.
 - Possibly more dust deposition, leading to decreased albedo and therefore a quicker melting process

Moving down or not?

- The main goal of this study was to identify the most appropriate and sustainable response to face the current challenges in terms of *water availability* as well as *natural risks* and associated *socio-economic* aspects.
- The *current problems* in the existing villages were *holistically analyzed* and possible solutions elaborated.
- 20 previously *identified core issues* were analysed.
- For each issue it was discussed, whether the situation is better at the current or the displaced location.

Issues of the qualitative assessment of Samzong - I

No	Aspects	Issue	Stay	Neutral	Move
1	Dhysical	Irrigation water availability			х
2	Physical character-	Drinking water availability		х	
3	istics	Drinking water quality	х		
4		Technical complexity		Х	
5	Irrigation	Initial costs		х	
6	water supply system	Overall durability (abrasion, exposure to natural hazards)		Х	
7		Maintenance and operation (labour, associated costs, etc.)			Х
8		Technical complexity	х		
9	Drinking water supply system	Initial costs	х		
10		Overall durability (abrasion, exposure to natural hazards)			х
11		Maintenance and operation (labour, associated costs, etc.)			Х

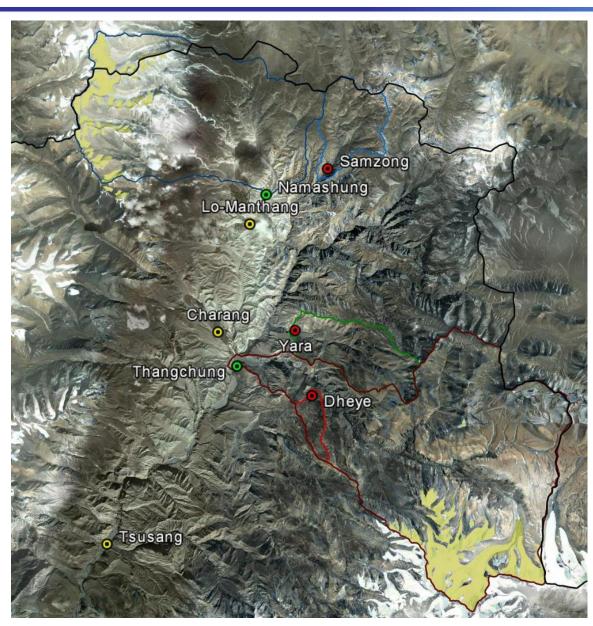
Issues of the qualitative assessment of Samzong - II

No	Aspects	Issue	Stay	Neutral	Move
12	Geolo-	Exposure of settlement to geol. risks			х
13	gical risks	Exposure of agricult. area to geol. risks	х		
14		Access to public services (i.e. health)			х
15		Opportunities for economic activities		Х	
16	Socio-	Opportunities related to tourism			Х
17	economic issues	Demographic stability and evolution			Х
18	and ambient	Communal cohesion	Х		
19	conditions	Access to natural and energetic resources			х
20		Ambient environmental conditions (wind, sunshine duration, thunderstorms, etc.)		Х	

Conclusions

Moving down or not?

Resettle the whole community


Samzong > Namashung

Dheye > Thangchung

Stay at the current location

Yara ➤ diversify economic activities in situ

Relocation sites

Relocation sites:

- Samzong

 Namashung
- Dheye Thangchung

Advantages:

- glaciated catchments, with more favorable water regimes
- much larger catchment area
- catchments span over a larger altitude range
- lower altitude and longer vegetation periods
- construction of orchards to generate monetary income
- possible activities exploiting touristic potential are far greater
- better access to public services of neighboring villages

Thanchung (Dheye)

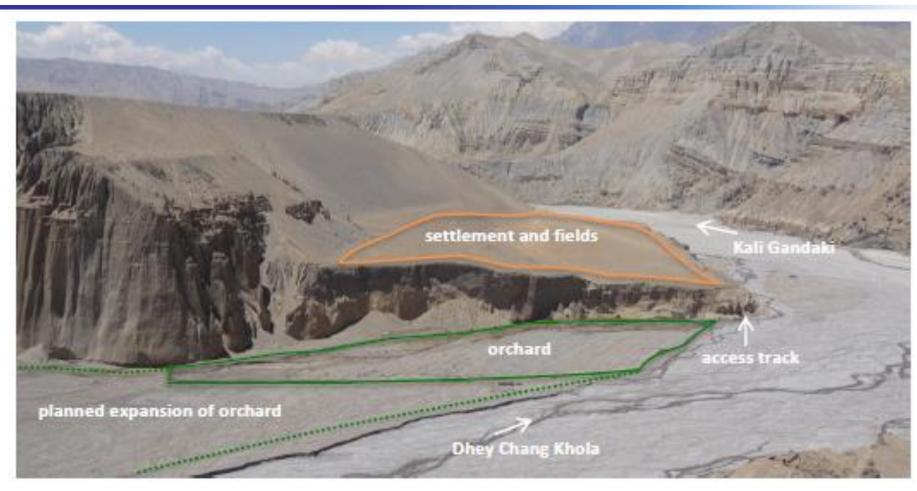


Figure 5.2: Thangchung seen from northeast. Below the designated relocation site (orange), an orchard has been realized (solid green), which is planned to be expanded extensively in the future (dotted green). A dirt track, recently realized, accessing the plateau is highlighted (photo: 13/05/2012, Daniel Bernet).

'No-regret' measures

Definition

- 'No-regret' measures are activities that yield *benefits for all stakeholders under all future climate scenarios*.
- The impacts of 'no-regret' measures are *consistently positive*.
- 'No-regret' measures are *cost-effective*.
- Unfortunately, 'no-regret' measures are *very rare*.

Is water harvesting really a 'no-regret' measure?

	T	T ↓ P ①	T ↓ P ↓	T
Upstream Agronomy	++	+	+	+
Downstream Agronomy	+	+	_	_
Malaria		_	+	-

Issues of the qualitative assessment of Samzong

Stay	Neutral	Move
		x
	Х	
х		
	Х	
	Х	
	Х	
		х
Х		
Х		
		Х
		Х

Stay	Neutral	Move
		Х
х		
		х
	Х	
		Х
		Х
х		
		Х
	Х	

No	Aspects	Issue		Qualification		
			Stay	Neutral	Move	202
1	Physical	Irrigation water availability			✓	_
2	character-	Drinking water availability		✓		
3	istics	Drinking water quality	✓			_
4	Irrigation	Technical complexity		✓		
5	water	Initial costs		✓		
6	supply	Overall durability (Abrasion, exposure to natural hazards)		✓		
7	systems	Maintenance and operation (labor, associated costs etc.)			~	_
8	Drinking	Technical complexity	✓			_
9	water	Initial costs	✓			
10	supply	Overall durability (Abrasion, exposure to natural hazards)			~	
11	systems	Maintenance and operation (labor, associated costs etc.) ^a			~	_
12	Geological	Exposure of the settlement to geological risks			✓	_
13	risks	Exposure of the agricultural area to geological risks	✓			_
14		Access to public services (i.e. health and education)			~	-
15		Opportunities for economic activities		✓		
16	Socio-	Opportunities related to tourism			~	
17	economic issues and	Demographic stability and evolution			~	
18	ambient	Communal cohesion	✓			
19	conditions	Access to natural and energetic resources			✓	
20		Ambient environmental conditions (wind, sunshine duration, thunderstorms, etc.)		~		0-
Tota	al count	•	5	6	9	- 27

a fil