Oxygen and Hydrogen Isotope Systematics for Hydrological Applications / Exercise-1

Name of the participant:

In case of MCQs tick the correct answer. In case of other questions solve the problem as required; answer sheet should reflect how you have solved the problem. Questions carry unequal marks. Use of calculator is permitted.

- 1. Craig's Meteoric Water Line is:
 - **a.** $\delta D = 8 \times \delta^{18} O + 10$
 - **b.** $\delta^{18}O = 8 \times \delta D + 10$
 - **c.** None of the above
- 2. *d*-excess is defined as:
 - **a.** $\delta D 8 \times \delta^{18} O$
 - **b.** $\delta^{18}O 8 \times \delta D$
 - **c.** None of the above
- **3.** Which one is the correct statement?
 - **a.** Global Meteoric water line passes through origin in the δ^{18} O- δ D plot
 - **b.** Global Meteoric water line does not pass through origin in the δ^{18} O- δ D plot
 - **c.** None of the above
- 4. GISP is:
 - a. Greenland Ice Sheet Precipitation
 - **b.** Global Isotopic Surface Precipitation
 - c. Global Isotope Standard for Precipitation
 - **d.** None of the above
- 5. Effect of evaporation is manifested in water in the form of:
 - **a.** No effect in *d*-excess because both δD and $\delta^{18}O$ increase due to evaporation
 - **b.** Increase in *d*-excess
 - c. Decrease in *d*-excess
 - **d.** None of the above
- 6. IAEA is:
 - **a.** Isotopic and Atomic Exploration Agency
 - **b.** International Atomic Energy Agency
 - c. Isotopic and Atomic Energy Agency
 - **d.** None of the above
- 7. Groundwater datasets from two different states have δ^{18} O- δ D regression line slopes of (A) 7.8 and (B) 4.2. Which one of this could be from Rajasthan?

Given: $[VSMOW^{16}O/^{18}O = 498.7033712; {}^{1}H/^{2}H = 6420.545746]$

- **a.** (Å)
- **b.** (B)

- Precipitation datasets from two different stations in India have δ^{18} O- δ D regression line 8. intercepts of 9 for station-A; and 18 for station B. Which of these two datasets could be from Kashmir? Given: The atmospheric temperature lapse rate is 6°C and $^{18}\alpha$ at 10°C is 1.0106.
 - a. Station-A
 - **b.** Station-B
- 9. A water sample kept open in refrigerator can be expected to:
 - a. Become Isotopically enriched
 - **b.** Become Isotopically depleted
 - **c.** Maintain the same isotopic composition
- **10.** Distilled water from a laboratory distillation plant can be expected to:
 - **a.** Become Isotopically enriched compared to feed water
 - **b.** Become Isotopically depleted compared to feed water
 - c. Maintain the same isotopic composition as feed water.
- 11. δ^{18} O value of 10% for a sample means that:
 - **a.** Sample has 10% more 18 O than reference
 - **b.** Sample has 1% more 18 O than reference
 - c. ¹⁸O concentration in sample = 10%
 - **d.** ¹⁸O concentration in sample = 1%
- **12.** Which one has the lowest vapor pressure

 - $\begin{array}{lll} a. & {H_2}^{18}O \\ b. & {H_2}^{16}O \\ c. & {H_2}^{17}O \end{array}$

 - d. All have same value of vapor pressure
- 13. Water samples-A has 2005 atoms of ¹⁸O per million atoms of ¹⁶O and water sample B has 2025 atoms of ¹⁸O per million atoms of ¹⁶O. What is the value of isotope separation $\Delta_{(A-B)}$? **Given:** [VSMOW ¹⁶O/¹⁸O = 498.7033712]
- 14. From initial 9268 kg of water vapor in a cloud parcel at 7:00 am 2780 kg rain out at 7:15 am due to equilibrium condensation at an altitude of 2.5 km. If the initial δ^{18} O of vapor was -21 ‰ and the ground temperature at the time of rainfall was 25°C calculate the δ^{18} O of remaining vapor. The atmospheric temperature lapse rate is 6°C and $^{18}\alpha$ at 10°C is 1.0106. **Given:** $[VSMOW^{16}O/^{18}O = 498.7033712; {}^{1}H/^{2}H = 6420.545746]$
- A water sample has isotopic composition of $\delta^{18}O = -7\%$ and $\delta D = -48.0\%$ with respect to 15. VSMOW. Calculate the abundance ratios ${}^{18}O/{}^{16}O$ and ${}^{2}H/{}^{1}H$ in this water sample. **Given:** [VSMOW 16 O/ 18 O = 498.7033712; 1 H/ 2 H = 6420.545746]
- 16. Two compounds X and Y in thermodynamic equilibrium have isotopic compositions of δx = 0 ‰ and $\delta y = 0$ ‰, what is the value of equilibrium fractionation factor α_{x-y} ?
- Two compounds A and B under equilibrium have isotopic compositions of $\delta A = 10$ ‰ and 17. $\delta B = -10$ ‰, calculate the value of ε_{A-B} : **Given:** [VSMOW 16 O/ 18 O = 498.7033712; 1 H/ 2 H = 6420.545746]
- Two compounds X and Y in thermodynamic equilibrium have isotopic compositions of δx 18. = 0 ‰ and δv = -20 ‰, calculate the value of α_{v-x} : **Given:** $[VSMOW^{16}O/^{18}O = 498.7033712; {}^{1}H/^{2}H = 6420.545746]$

- **19.** If the ¹⁸O/¹⁶O and ²H/¹H ratios in a sample are given to be 0.0020410 and 0.0001735 respectively. Calculate the oxygen and hydrogen isotopic composition (δ^{18} O and δ D in ‰) with respect to VSMOW. **Given:** [VSMOW ¹⁶O/¹⁸O = 498.7033712; ¹H/²H = 6420.545746]
- 20. Two samples, of water and vapor in thermodynamic equilibrium at 25°C, were found to have following isotopic compositions:
 Water: δ¹⁸O = -5 ‰; δD = -29.6 ‰;
 Vapor: δ¹⁸O = -14.2‰; δD = -98.6 ‰
 Calculate the observed water-vapor equilibrium fractionation factor α (water-vapor) for both oxygen and hydrogen.

Notes:

$$\begin{pmatrix} \frac{^{18}\text{O}}{^{16}\text{O}} \end{pmatrix}_{\text{VSMOW}} = (2005.2 \pm 0.5) \times 10^{-6}$$

$$\begin{pmatrix} \frac{^{2}\text{H}}{^{1}\text{H}} \end{pmatrix}_{\text{VSMOW}} = (155.75 \pm 0.45) \times 10^{-6}$$

$$\delta (\%) = \left(\frac{[\text{R}]_{\text{sample}}}{[\text{R}]_{\text{standard}}} - 1 \right) \times 1000$$

$$\epsilon_{\text{X}-\text{Y}} = (\alpha - 1) \cdot 10^{3} = \left(\frac{\text{R}_{\text{X}}}{\text{R}_{\text{y}}} - 1 \right) \cdot 10^{3}$$

$$\alpha_{\text{X}-\text{Y}} = \frac{1 + \frac{\delta_{\text{X}}}{1000}}{1 + \frac{\delta_{\text{Y}}}{1000}} = \frac{1000 + \delta_{\text{X}}}{1000 + \delta_{\text{Y}}}$$